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Abstract

We establish a maximal probability inequality for a class of random variables in the framework of measure-free, Riesz
spaces. In the “other” Kolmogorov’s inequality, we consider an upper bound for independent random variables and
estimate the lower bound for the sums of random variables in Riesz spaces setting. Furthermore, we get an upper
bound for the variance of the sum of random variables.
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1 Introduction

One of the most absorbing applications in the theory of Riesz spaces is the study of stochastic processes and
probability theory. The probability theory of Riesz spaces has a connection with arguments in the classical setting of
probability theory. In fact, order theoritic concepts have replaced measure theoritic concepts. Events are traditionally
defined as measurable sets and they are associated with band projections. Hence the σ-algebra of measurable sets
are associated with a Boolean algebra of band projections. Furthermore, random variables are traditionally defined
in terms of measurable functions, hence it is a natural assumption to consider them as members of a Riesz space.
The general theory of stochastic processes in Riesz spaces have been considered by Kuo, Labuschagne and Watson,
Troitsky and Gessesse, Grobler and Vardy in [17, 18, 26, 23, 10, 11, 9, 27, 12, 16, 14]. It have also been studied in
[3, 15, 7]. In the probability theory of Riesz spaces, the role of the probability measure is played by a conditional
expectation operator defined in [17, 18].
The probability inequalities play an important role in Probability theory. Since estimation the probabilities of an event
or the sum of random variables, helps us to understand the behavior of the elements. Some of important inequali-
ties, such as Burkholder inequalities, Chebyshev’s inequality, Jensen’s inequality, Doob’s martingale inequalities, etc.,
have been studied in the probability theory of Riesz spaces setting (see [3, 12, 13, 20, 21]). Recently, we have estab-
lished Kolmogorov’s inequality, Hájek-Rényi inequality, Lévy’s inequality, Etemadi’s inequality, Cantelli’s inequality,
Skorohod’s or Ottaviani’s inequality in the probability theory of Riesz spaces setting (see [6, 8]).
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In this paper, we are going to establish a maximal probability inequality for a class of random variables in the
framework of measure-free, Riesz spaces. In the “other” Kolmogorov’s inequality, we want to get a lower bound for
the sums of certain independent random variables in Riesz spaces. Note that in the Kolmogorov’s inequality ([7],
Theorem 3.1), we obtained an upper bound on the sums of certain independent random variables.

2 Preliminaries

We imagine that the readers are familiar to the basic notations of Riesz spaces [1, 29], but for the convenience of
the readers, we express some of the main concepts.
Let E be a Dedekind complete Riesz space with a weak order unit E. The Riesz space E is called laterally complete
if every subset of E , which consists of mutually disjoint elements, has a supremum in E . Moreover E is said to be
universally complete if it is laterally complete and Dedekind complete. A universal completion of E which denoted
by E u is a universally complete space that contains E as an order dense ideal. A strictly positive order-continuous
projection F on E mapping weak order units to weak order units and having Dedekind complete range is called a
conditional expectation operator on E . The Riesz space E is called F-universally complete if for each increasing net
(Xα) in E+ with (FXα) order bounded in E u, we have that (Xα) is order convergent in E to X. It is known that EE ,
the principal ideal generated by E, is lattice isomorphic to a space C(K) with K as a compact Hausdorff space, such
that E corresponds to the constant random variable 1 (see [1]). Note that EE can get an f -algebra structure which
coincided with the f -algebra structure of C(K). This multiplication can be uniquely extended to E u, in which E is
both a multiplicative unit and a weak order unit. This multiplication is constructed by setting(

PE
)
.
(
QE
)

= PQE =
(
QE
)
.
(
PE
)
,

for two band projections P and Q. For more details about f -algebras one can see [4, 5, 29]. Let X and Y be two
elements of E . We define B(X ≤ Y ) to be the band generated by (Y −X)+ and B(Y < X) to be its disjoint element.
Let F be a conditional expectation on E with the range F. Two band projections P and Q in the Boolean algebra B
of all band projections of E are called F-conditionally independent whenever

FPFQE = FPQE = FQFPE.

Equivalently, P and Q are F-conditionally independent whenever

FPFQ|F = FPQ|F = FQFP|F.

In addition, two elements X and Y in E are called F-conditionally independent if and only if two order closed
Riesz subspaces < X,R(F) > and < Y,R(F) > generated by X and R(F) and by Y and R(F) are F-conditionally
independent. By Radon-Nikodým-Douglas-Andô type theorem was established in [28] a subset G of an F-universally
Dedekind complete Riesz space E is a closed Riesz subspace of E with R(F) ⊂ G if and only if there is a unique
conditional expectation FG on E with R(FG) = G and FGF = F = FFG. In a consequence of this theorem, two closed
Riesz subspaces E1 and E2 with R(F) ⊂ E1 ∩ E2 are F-conditionally independent if and only if

F1F2 = F = F2F1. (2.1)

The equality (2.1) is equivalent to

FiX = FX for all X ∈ E3−i, i = 1, 2. (2.2)

For more information about independence see [19, 27, 22]. The domain of a conditional expectation F can be extended
to the natural domain L1(F), which is an F-universally Dedekind complete ideal of the universal completion E u (see
[18]). This extension F′ , is a conditional expectation on L1(F). We shall always identify F and F′ in this paper without
further mention. Note that L1(F)u = E u. Since E u has an f -algebra structure, thus the multiplication of elements of
E is defined but it is not necessarily an element of E . This leads Labuschagne and Watson to define

L2(F) := {X ∈ L1(F)|X2 ∈ L1(F)}.

If X,Y ∈ L2(F), then 0 ≤ (X ± Y )
2

= X2± 2XY +Y 2. Therefore ±2XY ≤ X2 +Y 2 and 2|XY | ≤ X2 +Y 2 ∈ L1(F).
Hence XY ∈ L1(F) (see [23]).
We will use the following results of ([16], Lemma 4.1, Theorem 4.2).
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Lemma 2.1. Let X,Y ∈ L2(F) be F-conditionally independent, then

FXY = FXFY = FY FX. (2.3)

Theorem 2.2. Let (Xk)k∈N be an F-conditionally independent sequence in L2(F). Then,

var
( n∑
k=1

Xk

)
=

n∑
k=1

var(Xk). (2.4)

3 Maximal inequalities

In this section, the “other” Kolmogorov’s inequality is established in the framework of Riesz spaces. We assume
throughout that F is a conditional expectation on F-universally Dedekind complete Riesz space L1(F) with a weak

order unit E, such that F(E) = E. For 1 ≤ k ≤ n, we set Sk :=
∑k
i=1Xi.

In the Kolmogorov’s inequality ([7], Theorem 3.1), we found an upper bound on the probability for the partial sums
of a sequence of independent random variables. In fact, if X1, X2, . . . Xn ∈ L2(F) are F-independent with FXk = 0 for
every k. Then, for λ > 0,

λ2FP(sup1≤k≤n |Sk|−λE)+E ≤
n∑
k=1

FXk
2. (3.1)

A sketch of the proof : Suppose that S := sup1≤k≤n |Sk|. Take

B1 := B(|S1| ≥ λE),

B2 := B(|S1| < λE, |S2| ≥ λE),

...

Bn := B(|S1| < λE, . . . , |Sn−1| < λE, . . . , |Sn| ≥ λE), (3.2)

with corresponding band projections PBk
, for 1 ≤ k ≤ n. If P denotes the projection onto the band B(S ≥ λE), we

have that P =
∑n
k=1 PBk

. In the projection band Bk, PBk
S2
k ≥ PBk

λ2E = λ2PBk
E, hence

λ2FP(sup1≤k≤n |Sk|−λE)+E = λ2
n∑
k=1

FPBk
E ≤

n∑
k=1

FPBk
Sk

2 = FPSk2 ≤ FSk2. (3.3)

Since F is linear we get that

FSk2 = F(Sk
2 − Sn2) + FSn2 =

n∑
i=1

n∑
j=k+1

FXiXj −
n∑

i=k+1

FX2
i + FSn2.

Thus

n∑
k=1

FPkSk2 ≤
n∑
i=1

n∑
j=k+1

FXiXj −
n∑

i=k+1

FX2
i + FSn2

=

n∑
i=1

n∑
j=k+1

FXiFXj −
n∑

i=k+1

FX2
i + FSn2 (Xi, Xj are F-independent)

= −
n∑

i=k+1

FX2
i + FSn2 (F(Xk) = 0 for 1 ≤ k ≤ n)

≤ FSn2 =

n∑
k=1

FXk
2. (3.4)
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(3.3) together with (3.4) implies that

λ2FP(sup1≤k≤n |Sk|−λE)+E ≤
n∑
k=1

FXk
2.

We are going to consider the lower bound of Kolmogorov’s inequality in Riesz spaces. In the next theorem, we
consider an upper bound for sup1≤k≤n |Xk| and estimate the lower bound of (3.1) as follows.

Theorem 3.1. (The “other” Kolmogorov’s inequality)
Let X1, X2, . . . Xn ∈ L2(F) be F-independent with FXk = 0 for every k, and there exists constant M > 0, such that

sup
1≤k≤n

|Xk| ≤M.

Then for λ > 0,
n∑
k=1

FXk
2 FP(sup1≤k≤n |Sk|−λE)+E ≥

n∑
k=1

FXk
2 − (λ+M)2.

Proof . Let {Bk : 1 ≤ k ≤ n} be defined by (3.2). Define

A1 := B(|S1| < λE),

A2 := B(|S1| < λE, |S2| < λE),

...

An := B(|S1| < λE, . . . , |Sn−1| < λE, . . . , |Sn| < λE),

with corresponding band projections PAk
. Then for all k, Ak ∩ Bk = ∅ and

PAd
k

=

k∑
j=1

PBj , (3.5)

in which PAd
k

and PBj are the corresponding band projections with respect to the bands Adk and Bj . By (3.5) we
obtain

PAk
= I − PAd

k
= I −

k∑
j=1

PBj ,

hence

PAk
Sk + PBk

Sk = (I −
k∑
j=1

PBj
)(Sk) + PBk

Sk = (I −
k−1∑
j=1

PBj
)(Sk) = PAk−1

Sk.

Thus
PAk

Sk + PBk
Sk = PAk−1

Sk = PAk−1
Sk−1 + PAk−1

Xk. (3.6)

By squaring and taking expectations the first equality in (3.6) yields

F(PAk−1
Sk)2 = F(PAk−1

Sk−1 + PAk−1
Xk)2. (3.7)

We have

F(PAk−1
Sk−1)2 + F(PAk−1

Xk)2 = F(PAk−1
Sk−1)2 + F(PAk−1

Xk)2

+ 2F(PAk−1
Sk−1)F(Xk)

= F(PAk−1
Sk−1)2 + F(PAk−1

Xk)2

+ 2F(PAk−1
Sk−1Xk) (by F-independent)

= F(PAk−1
Sk−1 + PAk−1

Xk)2. (3.8)
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Thus by (3.7) and (3.8) we get that

F(PAk−1
Sk)2 = F(PAk−1

Sk−1)2 + F(PAk−1
Xk)2. (3.9)

Let Pk denotes the band projection corresponding to the band generated by X2
k . Then PkX2

k = X2
k , and we have

FX2
kFPAk−1

E = FPkX2
kFPAk−1

E

= FPAk−1
EFPkX2

k (by F-independent)

= FPAk−1
EPkX2

k (by F-independent)

= FPAk−1
EX2

k (by PkX2
k = X2

k)

= FPAk−1
X2
k

= FPAk−1
XkPAk−1

Xk (by f -algebra structure)

= F(PAk−1
Xk)2. (3.10)

Also by the last equality in (3.6) we get that

F(PAk−1
Sk)2 = F(PAk

Sk + PBk
Sk)2

= F(PAk
Sk)2 + F(PBk

Sk)2 + 2F(PAk
SkPBk

Sk)

= F(PAk
Sk)2 + F(PBk

Sk)2 (by Ak ∩ Bk = ∅)
= F(PAk

Sk)2 + F(PBk
Sk−1 + PBk

Xk)2. (3.11)

For the band Bk we have Sk−1 < λ and supk |Xk| ≤M , thus by (3.11) we obtain

F(PAk−1
Sk)2 ≤ F(PAk

Sk)2 + F(PBk
λ+ PBk

M)2

= F(PAk
Sk)2 + F

(
PBk

(λ+M)
)2

= F(PAk
Sk)2 + F(λ+M)2FPBk

E

≤ F(PAk
Sk)2 + (λ+M)2FPBk

E. (3.12)

By (3.9) and (3.12) we get

F(PAk−1
Sk−1)2 + FX2

kFPAk−1
E ≤ F(PAk

Sk)2 + (λ+M)2FPBk
E,

hence,
FX2

kFPAk−1
E ≤ F(PAk

Sk)2 − F(PAk−1
Sk−1)2 + (λ+M)2FPBk

E.

Note that PAn
E ≤ PAk−1

E, since An ⊂ Ak for all k, thus

FX2
kFPAnE ≤ F(PAk

Sk)2 − F(PAk−1
Sk−1)2 + (λ+M)2FPBk

E.

After summation it implies that

n∑
k=1

FX2
kFPAnE ≤

n∑
k=1

F(PAk
Sk)2 −

n∑
k=1

F(PAk−1
Sk−1)2 + (λ+M)2

n∑
k=1

FPBk
E

= F(PAn
Sn)2 + (λ+M)2

n∑
k=1

FPBk
E

= F(PAn
Sn)2 + (λ+M)2FPAd

n
E.

Since Sn < λ, we get that

n∑
k=1

FX2
kFPAn

E ≤ F(PAn
λ)2 + (λ+M)2FPAd

n
E

≤ λ2FPAn
E + (λ+M)2FPAd

n
E. (3.13)
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By the fact that PAn
= I− PAd

n
, we obtain

n∑
k=1

FX2
kFPAnE = λ2F(I− PAd

n
)E + (λ+M)2FPAd

n
E

= λ2 − λ2FPAd
n
E + (λ+M)2FPAd

n
E

≤ (λ+M)2.

It means that
n∑
k=1

FXk
2 FP(sup1≤k≤n |Sk|−λE)−E ≤ (λ+M)2.

By the concept of adjoint we get

n∑
k=1

FXk
2 F
(
I− P(sup1≤k≤n |Sk|−λE)+

)
E ≤ (λ+M)2.

Therefore,
n∑
k=1

FXk
2 FP(sup1≤k≤n |Sk|−λE)+E ≥

n∑
k=1

FXk
2 − (λ+M)2.

�

Remark 3.2. Let FXk 6= 0 and supk |Xk| ≤M , then by 0 ≤ F ≤ I we get that

sup
k

FXk ≤ FM ≤M,

hence supk |Xk − FXk| ≤ 2M . By Theorem 3.1, we obtain

n∑
k=1

FXk
2FP(sup1≤k≤n |Sk−FSk|−λ)+E ≥

n∑
k=1

FXk
2 − (λ+ 2M)2.

To see another result, by (3.13) in the proof of Theorem 3.1, we get a separate result as follows. In the following
corollary, we obtain an upper bound for the variance of the sum of random variables.

Corollary 3.3. Let X1, X2, . . . Xn ∈ L2(F) be F-independent with FXk = 0 for every k and there exists constant
M > 0 such that

sup
1≤k≤n

|Xk| ≤M.

By (3.13) for λ > 0,

n∑
k=1

FXk
2 FP(sup1≤k≤n |Sk|−λ)−E ≤ λ

2FP(sup1≤k≤n |Sk|−λ)−E

+ (λ+M)2FP(sup1≤k≤n |Sk|−λ)+E.

Since P(sup1≤k≤n |Sk|−λ)−E = I − P(sup1≤k≤n |Sk|−λ)+E, we get that

n∑
k=1

FXk
2 F(I − P(sup1≤k≤n |Sk|−λ)+)E ≤ λ2F(I − P(sup1≤k≤n |Sk|−λ)+)E

+ (λ+M)2FP(sup1≤k≤n |Sk|−λ)+E.

Take FP(sup1≤k≤n |Sk|−λ)+E < δ, for some 0 < δ < E, then

(E − δ)
n∑
k=1

FX2
k < λ2(E − δ) + (λ+M)2δ.
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