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Abstract

Error estimate and rate of convergence are two important topics in the field of numerical analysis. A convenient
normed space corresponding to the problem under regard can have better upper bounds. This paper introduces a
weighted normed space Lp,ω which from the measure theory point of view, is a special case of Lp space. This space is
a modification of Lp,α space, which is introduced before in [2]. Next, by using Lp,α-norm, we compute a two-variable
upper bound of the triangular function.
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1 Introduction

In 2016, an article entitled ”On fractional Langevin equation involving two fractional orders”, was published which
speaks about the existence and uniqueness of the solution of the two-fractional Langevin equation [2],{

Dβ(Dα + γ)x(t) = f(t, x(t)), 0 ≤ t ≤ 1,
x(0) = µ0, x(α)(0) = ν0,

(1.1)

where γ, µ0, and ν0 are some given real number, 0 < α ≤ 1 and 0 < β ≤ 1 have the limitation 0 < α + β < 1,
f : [0, 1] × R → R is a Lebesgue measurable function, and Dα is the notation of the Caputo fractional derivatives of
the order α defined by

Dαx(t) =
1

Γ(m− α)

∫ t

0

(t− s)m−α−1x(m)(s)ds, 0 ≤ t ≤ 1. (1.2)

The generalized Langevin equation (1.1) has been applied to model physical events in vacillating environments such
as modelling the ocean surface wind speed [5].
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In that paper, the author has introduced the space Lp,α, equipped with the associated norm ‖.‖p,α, for the fixed
components 1 ≤ p <∞ and 0 < α ≤ 1 as follows:

Lp,α([0, tf ]) := {f : f is measurable on [0, tf ] and ‖f‖p,α <∞},

where

‖f‖p,α := sup
0≤t≤tf

(∫ t

0

|f(s)|p

(t− s)1−α ds
)1/p

.

According to the reference [2], some properties of (Lp,α, ‖.‖p,α) are summarized as follows:

(i) ‖f + g‖p,α ≤ ‖f‖p,α + ‖f‖p,α, which shows that Lp,α is a normed space.

(ii) Lp,α is a Banach space.

(iii) If α < β and 0 ≤ tf ≤ 1, then ‖f‖p,β ≤ ‖f‖p,α, and clearly Lp,α ⊆ Lp,β .

By taking β = 1 in part (iii) of the above properties, it can be verified that ‖f‖p ≤ ‖f‖p,α. This clearly shows that
Lp,α ⊆ Lp. Recall that (Lp, ‖.‖p) are the set of all functions which the pth power of the absolute value is Lebesgue
integrable. It is worth noticing that Lp,1([0, tf ]) = Lp([0, tf ]).

2 A modification to Lp,α

In this section, we introduce an improvement of the previous normed spaces, called Lp,ω(Ω) spaces. As we see,
the norm in such spaces is defined in the term of weighted functions. Next, we state the completeness of Lp,ω(Ω) for
1 ≤ p ≤ ∞ that has an essential role in error estimation.

2.1 Weighted spaces Lp,ω(Ω)

Consider Ω :=
∏d
i=1(ai, bi) be a Lebesgue measurable subset of Rd, d ∈ N with non-empty interior, and Ω′ :=∏d

i=1(ai, ti) be a subset of Ω. Let f be a Lebesgue measurable function on Ω and let ω(t, s) be a given weight
function, which is almost everywhere (a.e.) positive on Ω × Ω′, and Lebesgue integrable on Ω with the condition
kω := ess supΩ

∫
Ω′
w(t, s)ds < ∞. In what follows, we introduce the space Lp,ω(Ω) and its norm ‖.‖Lp,ω(Ω) for some

p, 1 ≤ p ≤ ∞, and some useful properties of this space [7].

Definition 2.1. For 1 ≤ p ≤ ∞, let

Lp,ω(Ω) := {f : f is Lebesgue measurable on Ω and ‖f‖Lp,ω(Ω) <∞},

where for 1 ≤ p <∞,

‖f‖Lp,ω(Ω) := ess sup
t∈Ω

(∫
Ω′
|f(s)|pw(t, s)ds

)1/p

,

and
‖f‖L∞,ω(Ω) := ess sup

s∈Ω
|f(s)| = ‖f‖L∞(Ω).

The space L∞,ω(Ω) consists of all essentially bounded measurable functions f on Ω that there exists a constant K
such that |f(s)| ≤ K a.e. on Ω. The greatest lower bound of such constants K is called the essential supremum of
|f(s)| on Ω, denoted by ‖f‖∞,ω(Ω).

The norm ‖.‖∞,ω(Ω) is a combination of two classical norms Lp (p-norm) on Ω′ with measure dµ = ω(t, s)ds and
L∞ (ess sup-norm) on Ω. Hence all norm axioms are evident. For example Minkowski’s inequality and Hölder’s
inequality are easily deduced for ‖.‖∞,ω(Ω) from this issue.

It is easily verified that if the weight function ω be a one-variable function of s, and Ω = Ω′ then (Lp,ω(Ω), ‖.‖Lp,ω(Ω))
is really an extension of the simple weighted space (Lpω(Ω), ‖.‖Lpω(Ω)) [3, 7].

Now we present some of the fundamental properties of Lp,ω(Ω) spaces.
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2.2 Some properties of Lp,ω(Ω)

Lemma 2.2. Let 1 ≤ p < ∞. If ω(t, s) ≥ 1 for all (t, s) ∈ Ω × Ω′ (a.e.), then ‖f‖Lp(Ω) ≤ ‖f‖Lp,ω(Ω), and clearly
Lp,ω(Ω) ⊆ Lp(Ω). Otherwise, ‖f‖Lp,ω(Ω) ≤ ‖f‖Lp(Ω), and therefore Lp,ω(Ω) ⊆ Lp(Ω).

Proof. The proof deduces immediately from definition of the spaces Lp,ω(Ω) and Lp(Ω).

�

Lemma 2.3. Suppose 1 ≤ p < ∞. If ω1(t, s) ≤ ω2(t, s) for all (t, s) ∈ Ω × Ω′ (a.e.), then ‖f‖Lp,ω1
(Ω) ≤ ‖f‖Lp,ω2

(Ω),
and clearly Lp,ω2

(Ω) ⊆ Lp,ω1
(Ω).

Proof. It follows immediately from the following obvious inequality,∫
Ω′
|f(s)|pω1(t, s)ds ≤

∫
Ω′
|f(s)|pω2(t, s)ds.

�

The following theorem establishes the completeness of Lp,ω(Ω) for 1 ≤ p ≤ ∞.

Theorem 2.4. For 1 ≤ p ≤ ∞, Lp,ω(Ω) is a complete metric space.

Proof. The proof is similar to the proof of completeness of Lp (see [6], Theorem 3.11, p. 67).

�

Remark 2.5. In Definition 2.1, if we choose ω(t, s) := 1
(t−s)1−α for 0 < α ≤ 1, and Ω := [0, 1], then we obtain the

space (Lp,α[0, 1], ‖.‖p,α). Special structure of this space has made it perfect for the fractional integral equations. With
this agreement, the Lp,α-norm, for an arbitrary function f , can be written as the Riemann-Liouville fractional integral
operator, i.e.,

‖f‖p,α = sup
0≤t≤1

(
Γ(α)Iα|f |p(t)

)1/p

,

where Iα is the Riemann-Liouville operator of the order α, which is defined as follows:

Iαf(t) =
1

Γ(α)

∫ t

0

(t− s)α−1f(s)ds.

3 Application of the space Lp,α in error estimation

In this part we offer some reasons for applicability of the normed space (Lp,α, ‖.‖p,α) as follows.

(1) Lp,α[0, 1]-norm is more flexible than the classical norm Lp[0, 1], because there is an additional component α in
its structure. Also, we can easily verify that limα→1 ‖.‖p,α = ‖.‖p. This shows that the Lp,α[0, 1] space is a general-
ization of Lp[0, 1] space.

(2) Using the normed space (Lp,α, ‖.‖p,α), we can obtain some better error bounds in approximation theory. For
detailed discussion, consider the following triangular functions over the subinterval [ih, (i+ 1)h], i = 0, 1, . . . ,m− 1 of
the interval [0, tf ],

T1i(t) =

{
1− t−ih

h , ih ≤ t ≤ (i+ 1)h,
0, elsewhere,

T2i(t) =

{
t−ih
h , ih ≤ t ≤ (i+ 1)h,

0, elsewhere,
(3.1)

where for a given positive integer m, the step size h is defined as h =
tf
m (see [2]). Any square integrable function f

can be approximated by using two m-set vectors

T1(t) = [T10(t), . . . , T1m−1(t)]T , T2(t) = [T20(t), . . . , T2m−1(t)]T ,
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as follows:
f(t) ' f̃(t) = F1TT1(t) + F2TT2(t),

where F1i = f(ih), and F2i = f((i + 1)h), i = 0, 1, . . . ,m − 1. An error bound for estimating a twice differentiable
function f by the triangular orthogonal basis functions denoted by fm, is derived in Lp,α-norm as follows: Let f im(t)
be the TF estimation of the function f(t) in the subinterval [ih, (i+ 1)h], which has the following form:

f im(t) = f(ih)T1i(t) + f((i+ 1)h)T2i(t)

= f(ih)
(

1− (
t− ih
h

)
)

+ f((i+ 1)h)
( t− ih

h

)
= f(ih) + f((i+ 1)h)

( t− ih
h

)
− f(ih)

( t− ih
h

)
= f(ih) +

(f((i+ 1)h)− f(ih)

h

)
(t− ih)

' f(ih) + f ′(ih)(t− ih).

Defining the function f i as

f i(t) =

{
f(t), ih ≤ t < (i+ 1)h,
0, elsewhere,

(3.2)

and then expanding it by the second order Taylor series near the center point ih, there exists a number ξit ∈ (ih, (i+1)h)
such that

f i(t) = f(ih) + f ′(ih)(t− ih) +
f ′′(ξit)

2!
(t− ih)2.

We now define the interval error function ei(t) for all t ∈ [ih, (i+ 1)h) as

ei(t) =

{
f i(t)− f im(t), ih ≤ t < (i+ 1)h,
0, elsewhere.

(3.3)

Assuming f is twice continuously differentiable on [0, tf ], there exists a positive constant M such that |f ′′(t)| ≤ M ,
for all t ∈ [0, tf ]. On the other hand, the Riemann-Liouville operator of the power function (t − a)β−1, for α, β > 0
yields [4]:

Iα(t− a)β−1 =
Γ(β)

Γ(α+ β)
(t− a)α+β−1, a ≤ t.

Therefore for some ξit ∈ (ih, (i+ 1)h), Lp,α-norm of ei in the i-th interval is as follows:

‖ei‖pp,α = sup
0≤t≤tf

(∫ t

0

|ei(s)|p

(t− s)1−α ds
)

= sup
ih≤t≤(i+1)h

(∫ t

ih

|f i(s)− f im(s)|p

(t− s)1−α ds
)

= sup
ih≤t≤(i+1)h

(∫ t

ih

1

(t− s)1−α

∣∣∣f ′′(ξis)
2!

(s− ih)2
∣∣∣pds)

≤ Mp

2p
sup

ih≤t≤(i+1)h

(∫ t

ih

(s− ih)2p

(t− s)1−α ds
)

≤ Mp

2p
Γ(α)Γ(2p+ 1)

Γ(α+ 2p+ 1)
sup

ih≤t≤(i+1)h

(
(t− ih)2p+α

)
≤ Mp

2p
Γ(α)Γ(2p+ 1)

Γ(α+ 2p+ 1)
h2p+α.

(3.4)

This states that for any i ∈ {0, 1, . . . ,m− 1}, we have

‖ei‖p,α ≤
M

2

(Γ(α)Γ(2p+ 1)

Γ(α+ 2p+ 1)

)1/p

h(2p+α)/p. (3.5)

We see clearly that for any t ∈ [0, tf ], there exists i ∈ {0, 1, . . . ,m− 1} such that t belongs to the interval [ih, (i+ 1)h].
Therefore,

|f(t)− fm(t)| ≤ max
i∈{0,1,...,m−1}

|f i(t)− f im(t)|.
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So,

‖e‖pp,α = sup
0≤t≤tf

(∫ t

0

|f(s)− fm(s)|p

(t− s)1−α ds
)

≤ sup
0≤t≤tf

(∫ t

0

maxi∈{0,1,...,m−1} |f i(s)− f im(s)|p

(t− s)1−α ds
)

≤ max
i∈{0,1,...,m−1}

sup
ih≤t≤(i+1)h

(∫ t

ih

|f i(s)− f im(s)|p

(t− s)1−α ds
)

=
Γ(α)Γ(2p+ 1)

Γ(α+ 2p+ 1)

Mp

2p
h2p+α

=
Γ(α)Γ(2p+ 1)

Γ(α+ 2p+ 1)

Mpt2p+αf

2pm2p+α
.

(3.6)

This shows that ‖e‖p,α ≤
(

Bp,α
m2p+α

)1/p

, where the constant Bp,α := Γ(α)Γ(2p+1)
Γ(α+2p+1)

Mpt2p+αf

2p depends only on p and α.

Recall that M is the positive constant such that |f ′′(t)| ≤M , for all t ∈ [0, tf ]. As can be seen from (3.6), the upper

bound εm(p, α) :=
(

Bp,α
m2p+α

)1/p

is a two variable function of the elements 1 ≤ p ≤ ∞ and 0 < α ≤ 1. Without the

norm ‖.‖p,α we can only compute the error bound εm(p, 1) which is deduced from limα→1 ‖.‖p,α = ‖.‖p. Applying
this error bound, we able to give a better convergence analysis of the triangular orthogonal bases. For example we
can obtain the optimum upper bound of εm(p, α) in terms of the variables p and α. For this issue, we have used the
optimization package of Maple software 2015. After this work, the optimal values of 1 ≤ p ≤ ∞ and 0 ≤ α ≤ 1 are
computed as p ' 6.831832 and α = 1. This shows that we don’t always do any error analysis only with L2-norm. The
behaviour of the upper bound εm(p, α) assuming M = 1, tf = 1 and m = 5 is depicted for various tolerances of p and
α in Fig. 1.

Figure 1: (Left) the error bound εm(p, α) under ‖.‖p,α-norm for 1 ≤ p ≤ 2 and 0.5 ≤ α ≤ 1 and (right) the error bound εm(p, 1)
under ‖.‖p-norm for 1 ≤ p ≤ 2.

4 Conclusion

In this paper, we introduced a modified normed space of Lp,α, named Lp,ω-space. This space is a special case
of Lp which is obtained by defining the measure function dµ := ω(t, s)ds. Thus, (Lp,ω(Ω), ‖.‖Lp,ω(Ω)) is a Banach
space. Then, we obtained the two-variable upper bound function εm(p, α) for the triangular functions in Lp,α-space.
Applying the optimization package of Maple software 2015, the optimal values of 1 ≤ p ≤ ∞ and 0 < α ≤ 1 with
fixed parameters M = 1, tf = 1 and m = 5 were computed as p ' 6.831832 and α = 1, respectively. It is worth
noticing that the optimal value of α in εm(p, α), for any 1 ≤ p ≤ ∞ and 0 ≤ α ≤ 1, is one, because ‖f‖p ≤ ‖f‖p,α.
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