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Abstract

Motivated by definitions of countable completely regular spaces and completely below relations of frames, we define
what we call a c-completely below relation, denoted by ≺≺c, in between two elements of a frame. We show that a ≺≺c b
for two elements a, b of a frame L if and only if there is α ∈ RL such that coz(α) ∧ a = 0 and coz(α − 1) ≤ b where
the set {r ∈ R : coz(α− r) 6= 1} is countable. We say a frame L is a c-completely regular frame if a =

∨
x≺≺ca

x for any

a ∈ L. It is shown that a frame L is a c-completely regular frame if and only if it is a zero-dimensional frame. An ideal
I of a frame L is said to be c-completely regular if a ∈ I implies a ≺≺c b for some b ∈ I. The set of all c-completely
regular ideals of a frame L, denoted by c− CRegId(L), is a compact regular frame and it is a compactification for
L whenever it is a c-completely regular frame. We denote this compactification by βcL and it is isomorphic to the
frame β0L, that is, Stone-Banaschewski compactification of L. Finally, we show that open and closed quotients of a
c-completely regular frame are c-completely regular.

Keywords: Frame; c-completely regular frame and space; c-completely below relation; c-completely regular ideals;
Zero-dimensional frame; Compactification of frame.
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1 Introduction

As usual, let C(X) be the ring of all continuous real-valued functions on a completely regular space X. In [12],
the authors introduced and studied the subalgebra Cc(X) of C(X) consisting of elements with a countable range.
In that paper, a Hausdorff space X is called countable completely regular (briefly, c-completely regular) if whenever
F ⊆ X is a closed set and x /∈ F , then there exists f ∈ Cc(X) with f(F ) = 0 and f(x) = 1. Equivalently, a Hausdorff
space X is c-completely regular if whenever F ⊆ X is a closed set and x /∈ F , then there exist g, h ∈ Cc(X) with
x ∈ X \ Z(h) ⊆ Z(g) ⊆ X \ F . Therefore, a Hausdorff space X is c-completely regular if and only if for any open set
V of X, there is

{
(Ui, fi)

}
i∈I ⊆ O(X) × Cc(X) such that Ui ∩ coz(fi) = ∅, coz(fi − 1) ⊆ V and V =

⋃
i∈IUi. The

frame of open subsets of a topological space X is denoted by O(X).

A frame is a complete lattice L in which

a ∧
∨
S =

∨
s∈S

a ∧ s
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for any a ∈ L and S ⊆ L, ∧ and
∨

implicating meet and join in L, as usual. We use 0 and 1 for the bottom element and
the top element of L, respectively. Let RL be the ring of all continuous real-valued functions on a completely regular
frame L (see [2, 3] for details). For any α ∈ RL, let Rα = {r ∈ R : coz(α−r) 6= 1} (see [9]). The authors in [10, 11, 15]
study the set Rc(L) = {α ∈ RL : Rα is countable} as a sub-f -ring of RL (also, see [6, 7, 8]). When we study the ring
Rc(L), we can assume that L is a zero-dimensional (c-completely regular) frame because, in [15], it is shown that for
any frame L there exists a zero-dimensional frame M which is a continuous image of L and Rc(L) ∼= Rc(M). In [10],
it is shown that CozcL = {coz(α) : α ∈ Rc(L)} is a sub-σ-frame of L.

As usual, the rather below and the completely below relations denoted by ≺ and ≺≺ , respectively. Let L be a frame.
Recall that a ≺ b in case there is an element c ∈ L such that a ∧ c = 0 and c ∨ b = 1. Motivated by this definition,
in Definition 3.1, a c-rather below relation of L is defined. Some lattice-theoretic properties of this relation are given
in Theorem 3.2. Recall that a ≺≺ b in case there are elements (xq) indexed by the rational numbers [0, 1] ∩ Q such
that a = x0, b = x1 and xp ≺ xq for p < q. In Definition 3.5, we define a c-completely below relation of L and we
summarize the lattice-theoretic properties of this relation in Theorem 3.6. We show that the relations of ≺, ≺≺, ≺c
and ≺≺c are equal for compact c-regular frames (Corollary 4.3)

The main interest of the completely below relation, however, lies in its connection with continuous L(R)-valued
maps, as indicated by the following theorem (see [2, Poroposition 2.1.4 ] and [14, IV 1.4]).

Theorem 1.1. The following are equivalent for any a, b ∈ L.

(1) a ≺≺ b.
(2) There is α ∈ RL such that coz(α) ∧ a = 0 and coz(α − 1) ≤ b. Such a map can be chosen to satisfy 0 ≤ α ≤ 1

when it exists.

(3) There is some c ∈ CozL such that a ≺ c ≺ b.

This theorem is extended to the c-completely below relation in Theorem 3.9.

We define and study c-completely regular frames in the last section. For any frame L, the assignment a 7→ {x ∈
L : x ≺≺c a} defines a map rc : L → c− CRegId(L) such that rc is a right adjoint to

∨
. Some properties of this

map are given in Lemma 5.5. We show that c− CRegId(L) is a compact regular frame and
∨

: c− CRegId(L) → L
is a compactification of L if it is a c-completely regular frame (Lemma 5.6). In Theorem 5.8, it is shown that for
any frame L, c− CRegId(L) is a c-completely regular frame if and only if t ≺≺c a implies that rc(t) ≺≺c rc(a) in
c− CRegId(L) for any a ∈ L and t ∈ CozcL. Finally we show that any frame map preserves ≺c and ≺≺c, and hence,
any homomorphic image of a c-completely regular frame is a c-completely regular frame (see Lemma 5.9).

2 Preliminaries

2.1 Frames

For a general theory of frames and locales, we refer to [13, 14]. A frame or locale L is a complete lattice in which
finite meets distribute over arbitrary joins.

A frame L is said to be compact if whenever 1 =
∨
S, for S ⊆ L, then 1 =

∨
T for some finite subset T ⊆ S.

A frame homomorphism (or frame map) is a map between frames which preserves finite meets and arbitrary joins.
Frame homomorphisms which are onto will frequently be referred to as quotient maps. In particular, for any a ∈ L,
the open and closed quotients are defined by ↓ a = {x ∈ L : x ≤ a} and ↑ a = {x ∈ L : a ≤ x}, respectively. A
homomorphism is called dense if it maps only the bottom element to the bottom element. A compactification of L is
a dense onto homomorphism h : M → L with compact regular domain.

An ideal, in any bounded distributive lattice A, is a subset I ⊆ A such that
∨
J ∈ I for any finite J ⊆ I, and x ∈ I

whenever x ≤ y and y ∈ I. The set Id(A) of all ideals of A is a frame, with ≤ as inclusion and the ideal generated by⋃
Iα as

∨
Iα, and

∧
Iα =

⋂
Iα. Also, for every I, J ∈ Id(A)

1. I ∧ J = I ∩ J = {a ∧ b : a ∈ I, b ∈ J}.

2. I ∨ J = {a ∨ b : a ∈ I, b ∈ J}.

The pseudocomplement of an element a in a frame L, denoted by a∗, is the element

a∗ =
∨
{x ∈ L : a ∧ x = 0}.



On c-completely regular frames 25

An element a ∈ L is called complemented if a ∨ a∗ = 1. We write

BL = {a ∈ L : a ∨ a∗ = 1}

for the set of all complemented elements of L and, clearly, it is a sublattice of L.

2.2 The ring Rc(L)

The ring Rc(L) = {α ∈ RL : Rα is countable}, where Rα = {r ∈ R : coz(α − r) 6= 1}, has been studied as a
sub-f -ring of RL (see [10, 15] for details).

Recall that a σ-frame is a bounded distributive lattice in which every countable subset has a join and binary
meet distributes over these joins, and regularity ( complete regularity) of a σ-frame is the countable counterparts of
regularity ( complete regularity) of frames, that is, a =

∨
an≺a an (a =

∨
an≺≺a an) for each element a.

In [10], it is shown that CozcL = {coz(α) : α ∈ Rc(L)} is a sub-σ-frame of L such that

s ∈ CozcL⇔ s =

∞∨
n=1

sn, where sn ∈ BL.

This is to say that CozcL is a regular sub-σ-frame of L and hence, by [5], we deduce that it is normal (that is, given
a an b with a ∨ b = 1, we can find c and d such that c ∧ d = 0 and a ∨ c = 1 = b ∨ d). So, in CozcL, we have ≺=≺≺.
We note that BL ⊆ CozcL for any frame L.

3 c-completely below relation

Recall that a ≺ b in case there is an element c ∈ L such that a ∧ c = 0 and c ∨ b = 1. This motivates the following
definition.

Definition 3.1. Let L be a frame and a, b ∈ L. We define the order ≺c on L by

a ≺c b⇔ there exists x ∈ CozcL such that a ∧ x = 0 and x ∨ b = 1.

If a ≺c b we say that a is c-rather below b.

We note that 0 ≺c a and a ≺c 1 for any a ∈ L. It is clear that if a, b ∈ CozcL, then a ≺c b if and only if a ≺ b in
CozcL. We collect some lattice-theoretic properties of the c-rather below relation in the next theorem.

Theorem 3.2. Let L be a frame and a, b, c, d ∈ L.

(1) If a ≺c b, then a ≺ b.
(2) If a ≺c b, then there exists x ∈ CozcL such that a ≤ x∗ ≺ b.
(3) a ≺c a if and only if a is complemented.

(4) If a ≤ c ≺c d ≤ b, then a ≺c b.
(5) If a ≤ b and b is complemented, then a ≺c b.
(6) If a ≺c b and c ≺c d, then a ∨ c ≺c b ∨ d and a ∧ c ≺c b ∧ d.

(7) a ∨ b ≺c c⇔ a ≺c c, b ≺c c.
(8) c ≺c a ∧ b⇔ c ≺c a, c ≺c b.

Proof . The proof of (1) is obvious.

(2) Let a, b ∈ L with a ≺c b be given. Then there exits x ∈ CozcL such that a ∧ x = 0 and x ∨ b = 1. The latter
implies that

1 = x ∨ b ≤ x∗∗ ∨ b.

This means that x∗ ≺ b. By the former case, we have a ≤ x∗. Thus a ≤ x∗ ≺ b with x ∈ CozcL.

(3) We have a ∈ BL if and only if a∗ ∨ a = 1 and a∗ ∧ a = 0. On the other hand, if a ∈ BL, then a, a∗ ∈ CozcL.
Thus it is clear that a ≺c a if and only if a is complemented.
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(4) Since c ≺c d, then there exits x ∈ CozcL such that c ∧ x = 0 and x ∨ d = 1. But a ≤ c and d ≤ b imply that
a ∧ x ≤ c ∧ x = 0 and 1 = x ∨ d ≤ x ∨ b. Hence a ∧ x = 0 and x ∨ b = 1 with x ∈ CozcL. This means that a ≺c b.

(5) Let a ≤ b and b be complemented. Then by (3), b ≺c b. So by (4), a ≺c b.
(6) Let a ≺c b and c ≺c d. Then there exist x, y ∈ CozcL such that a ∧ x = 0, c ∧ y = 0, b ∨ x = 1, and d ∨ y = 1.

Now,
(a ∨ c) ∧ (x ∧ y) = (a ∧ x ∧ y) ∨ (c ∧ x ∧ y) = 0 ∨ 0 = 0

and
(b ∨ d) ∨ (x ∧ y) = (b ∨ d ∨ x) ∧ (b ∨ d ∨ y) = 1 ∧ 1 = 1

imply that a ∨ c ≺c b ∨ d since x ∧ y ∈ CozcL. Also,

(a ∧ c) ∧ (x ∨ y) = (a ∧ c ∧ x) ∨ (a ∧ c ∧ y) = 0 ∨ 0 = 0

and
(b ∧ d) ∨ (x ∨ y) = (b ∨ x ∨ y) ∧ (d ∨ x ∨ y) = 1 ∧ 1 = 1

imply that a ∧ c ≺c b ∧ d since x ∨ y ∈ CozcL.

(7) Since a, b ≤ a ∨ b, by (4), we get that if a ∨ b ≺c c then a ≺c c and b ≺c c. The converse follows by (6).

(8) Since a ∧ b ≤ a, b, by (4), we get that if c ≺c a ∧ b then c ≺c a and c ≺c b. The converse follows by (6). �

Corollary 3.3. Let L be a frame, a ∈ L and T be a finite subset of L. Then

(1)
∨
T ≺c a⇔ t ≺c a, for all t ∈ T .

(2) a ≺c
∧
T ⇔ a ≺c t, for all t ∈ T .

In a frame L, a scale from a to b is a subset

{xq : q ∈ [0, 1] ∩Q} ⊆ L,

indexed by the rational interval [0, 1] ∩Q such that a = x0, b = x1, and xp ≺ xq whenever p < q in [0, 1] ∩Q.

Definition 3.4. Let a and b be two elements of a frame L. A c-scale from a to b is a subset

{xq : q ∈ [0, 1] ∩Q} ⊆ L,

indexed by the rational interval [0, 1] ∩ Q such that a = x0, b = x1, {xq : q ∈ (0, 1) ∩ Q} ⊆ CozcL and xp ≺c xq
whenever p < q in [0, 1] ∩Q.

In the following definition, as stated in the abstract, we shall use definitions of countable completely regular spaces
and completely below relations of a frame L to define a c-completely below relation of L which will be the subject of
study in this paper.

Definition 3.5. Let L be a frame and a, b ∈ L. We say that a is c-completely below b, and write a ≺≺c b, if there is
a c-scale from a to b.

Clearly, 0 ≺≺c a and a ≺≺c 1 for any a ∈ L. Clearly, a ≺≺c b implies a ≺≺ b. The following theorem gives some
lattice-theoretic properties of the c-completely below relation.

Theorem 3.6. Let L be a frame and a, b, c, d ∈ L.

(1) If a ≺≺c b, then a ≺c b.
(2) a ≺≺c a if and only if a is complemented.

(3) If a ≤ c ≺≺c d ≤ c, then a ≺≺c b.
(4) If a ≺≺c b and c ≺≺c d, then b ∨ d ≺≺c a ∨ c and b ∧ d ≺≺c a ∧ c.
(5) If a ≺≺c b then there exists s ∈ CozcL with a ≺≺c s ≺≺c b.
(6) a ∨ b ≺≺c c⇔ a ≺≺c c, b ≺≺c c.
(7) c ≺≺c a ∧ b⇔ c ≺≺c a, c ≺≺c b.
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(8) The set {x ∈ L : x ≺≺c a} is an ideal of L.

Proof . The proof of (1), (2) and (3) is clear.

(4). Let a ≺≺c b and c ≺≺c d. Let {xq : q ∈ [0, 1] ∩ Q} be a c-scale from a to b, and {yq : q ∈ [0, 1] ∩ Q} be a
c-scale from c to d. Then Theorem 3.2 (6) shows that {xq ∨ yq : q ∈ [0, 1] ∩ Q} be a c-scale from a ∨ b to c ∨ d, and
{xq ∧ yq : q ∈ [0, 1] ∩Q} be a c-scale from a ∧ b to c ∧ d. Hence b ∨ d ≺≺c a ∨ c and b ∧ d ≺≺c a ∧ c.

(5). Let {xq : q ∈ [0, 1] ∩ Q} be a c-scale between a and b. Then we can take x 1
2

to be s, and use the c-scales

{x q
2

: q ∈ [0, 1] ∩Q} and {x q+1
2

: q ∈ [0, 1] ∩Q} to show a ≺≺c s and s ≺≺c b, respectively.

(6). By (3) and (4) is obvious.

(7). By (3) and (4) is obvious.

(8). By (6) is obvious. �

An immediate corollary to the foregoing lemma is the following.

Corollary 3.7. Let L be a frame and a, b ∈ L. Then a ≺≺c b if and only if there exists s ∈ CozcL such that
a ≺≺c s ≺≺c b.

The main interest of the≺≺c relation, however, lies in its connection with continuous L(R)-valued maps, as indicated
by the following theorem. We begin with the next lemma. This lemma was also proved in [1] although it was stated
slightly differently there. Here we state it in a manner we shall find useful.

Lemma 3.8. Suppose coz(ϕ) ≺c coz(δ).

(1) If ϕ, δ ∈ RL, then there exists an invertible element ρ ∈ RL such that ϕ = ϕρδ2.

(2) If ϕ ∈ RL and δ ∈ Rc(L), then there exists an invertible element ρ ∈ Rc(L) such that ϕ = ϕρδ2.

Proof . (1). Since coz(ϕ) ≺c coz(δ), we can find α ∈ Rc(L) such that coz(ϕ) ∧ coz(α) = 0 and coz(α) ∨ coz(δ) = 1.
The latter implies that

1 = coz(α) ∨ coz(δ) = coz(α2) ∨ coz(δ2) = coz(α2 + δ2),

this means that α2 + δ2 is invertible. By the former case, we have coz(ϕα) = 0, that is, ϕα = 0. Putting ρ = 1
α2+δ2 ,

we then have

ϕ = ϕ
α2 + δ2

α2 + δ2
=

ϕδ2

α2 + δ2
= ϕρδ2.

(2). Similar to (1). �

Recall from [3, Lemma 6] that for any α ∈ RL and any p, q ∈ Q,

α(p, q) = coz
(
(α− p)+ ∧ (q− α)+

)
.

So, α(p, q) ∈ CozcL whenever α ∈ Rc(L). We shall use this fact in part of the proof below.

Theorem 3.9. The following are equivalent for any a, b ∈ L.

(1) a ≺≺c b.
(2) There are c, d ∈ CozcL such that a ≤ c ≺c d ≤ b.
(3) There are c ∈ CozL and d ∈ CozcL such that a ≤ c ≺c d ≤ b.
(4) There is α ∈ Rc(L) such that coz(α) ∧ a = 0 and coz(α− 1) ≤ b. Such a map can be chosen to satisfy 0 ≤ α ≤ 1

when it exists.

Proof . (1)⇒ (2). By Theorem 3.6 (5) is clear.

(2)⇒ (3). Since CozcL ⊆ CozL, it is obvious.

(3) ⇒ (4). Take ϕ ∈ RL and δ ∈ Rc(L) such that c = coz(ϕ) and d = coz(δ). Then Lemma 3.8 (2) shows that
ϕ = ϕρδ2 for some invertible element ρ ∈ Rc(L). Putting α = 1− ρδ2, then we have α ∈ Rc(L) such that

coz(α) ∧ a ≤ coz(α) ∧ c = coz(α) ∧ coz(ϕ) = coz(αϕ) = 0
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and
coz(α− 1) = coz(−ρδ2) = coz(−ρ) ∧ coz(δ2) = 1 ∧ coz(δ) = coz(δ) = d ≤ b.

(4)⇒ (1). Let α satisfies (4). Define x0 = a, x1 = b, and xq = α(−, q) for q ∈ (0, 1)∩Q. We claim that the subset
{xq : q ∈ [0, 1] ∩Q} ⊆ L is a c-scale between a and b. That is because:

a: xq = α(−, q) ∈ CozcL for q ∈ (0, 1) ∩Q.

b: xp ≺c xq whenever p < q in (0, 1) ∩ Q since α(p,−) ∈ CozcL with xp ∧ α(p,−) = α(−, p) ∧ α(p,−) = 0 and
xq ∨ α(p,−) = α(−, q) ∨ α(p,−) = 1.

c: x0 ≺c xq whenever 0 < q since coz(α) ∈ CozcL with x0 ∧ coz(α) = a ∧ coz(α) = 0 and xq ∨ coz(α) =
α(−, q) ∨ α

(
(−, 0) ∨ (0,−)

)
= 1.

d: xq ≺c x1 whenever q < 1 since α(q,−) ∈ CozcL with xq ∧ α(q,−) = α(−, q) ∧ α(q,−) = 0 and x1 ∨ α(q,−) =
b ∨ α(q,−) ≥ coz(α− 1) ∨ α(q,−) = α

(
(−, 1) ∨ (1,−)

)
∨ α(q,−) = 1. �

An immediate corollary to the foregoing lemma is the following.

Corollary 3.10. Let L be a frame and a, b ∈ CozcL. Then a ≺≺c b if and only if a ≺c b if and only if a ≺ b in CozcL.

For the following, recall that if a ≺≺ b in a frame L, then b∗ ≺≺ a∗ in L.

Corollary 3.11. Let L be a frame and a, b ∈ L. If a ≺≺c b in L, then b∗ ≺≺c a∗ in L.

Proof . Let a ≺≺c b in L. Then Theorem 3.9 shows that there is some α ∈ Rc(L) such that a ∧ coz(α) = 0 and
coz(α− 1) ≤ b. Take β = 1− α. Then we would have

b∗ ∧ coz(β) = b∗ ∧ coz(1− α) = b∗ ∧ coz(α− 1) ≤ b∗ ∧ b = 0,

and
coz(β − 1) = coz(1− α− 1) = coz(−α) = coz(α) ≤ a∗.

Since β = 1− α ∈ Rc(L), Theorem 3.9 shows that b∗ ≺≺c a∗ in L. �

4 c-regular frames

A frame L is called regular if for every a ∈ L we have a =
∨
x≺a

x. This motivates the following definition.

Definition 4.1. A frame L is called c-regular if for every a ∈ L we have

a =
∨
x≺ca

x.

Lemma 4.2. Let L be a compact c-regular frame and x ≺ a ∨ b in L. Then there exists an element c in L such that
x ≺ a ∨ c and c ≺c b.

Proof . Since x ≺ a ∨ b, we have x∗ ∨ (a ∨ b) = 1. Since L is c-regular, b =
∨
z≺cb

z. Now

1 = x∗ ∨ (a ∨ b) = (x∗ ∨ a) ∨ b = (x∗ ∨ a) ∨
∨
z≺b

z =
∨
z≺b

(x∗ ∨ a) ∨ z

But L is compact, so there exist z1, . . . , zn in L such that zi ≺c b (1 ≤ i ≤ n) and

1 = (x∗ ∨ a ∨ z1) ∨ · · · ∨ (x∗ ∨ a ∨ zn) = x∗ ∨ a ∨ (z1 ∨ · · · ∨ zn).

Hence x ≺ a ∨ (z1 ∨ · · · ∨ zn) and by Theorem 3.2 (6), z1 ∨ · · · ∨ zn ≺c b. Thus z1 ∨ · · · ∨ zn is the desired c. �

Corollary 4.3. Let L be a compact c-regular frame. Then, the following statements are true.

(1) If x ≺ b in L, then there exists an element c in L such that x ≺ c ≺c b.
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(2) If x ≺ b in L, then there exists an element s in BL such that x ≺c s ≺c b.
(3) The relations of ≺, ≺≺, ≺c and ≺≺c are equal.

Proof . (1). Take a = 0 and apply the above lemma.

(2). By (1), there exists an element c in L such that x ≺ c ≺c b. Hence, there exists an element t in CozcL such
that c∧ t = 0 and t∨ b = 1. Hence, there exists {tn}n∈N ⊆ BL such that t =

∨
n∈N tn, which implies that there exists

an element n in N such that c ∧ tn = c ∧ t = 0 and tn ∨ b = t ∨ b = 1. Then x ≺ c ≤ t∗n ≺c t∗n ≤ b, which implies that
x ≺c t∗n ≺c b.

(3). It is obvious by (1) and (2). �

5 c-completely regular frames

Let X be a topological space. Then in the frame O(X) we have U ≺≺c V if and only if there exists a continuous
map f : X → [0, 1] with countable image such that f(U) = 0, f(X − V ) = 1. So, if we assume that for every
V ∈ O(X) we have V =

∨
U≺≺cV

U then X will be a c-completely regular space; since for every closed subset F and

x 6∈ F , by applying the above assumption for V = X − F , we obtain U ∈ O(X) with x ∈ U ≺≺c V , and hence we get
a continuous map f : X → [0, 1] with countable image such that f(x) = 0 and f(F ) = 1.Therefore, a Hausdorff space
X is c-completely regular if and only if for any open set V of X, V =

∨
U≺≺cV

U. In addition, recall that a frame L is

called completely regular if for every a ∈ L we have a =
∨
x≺≺a

x. These motivate the following definition.

Definition 5.1. A frame L is called c-completely regular if for every a ∈ L we have

a =
∨

x≺≺ca

x.

It is clear that a topological space X is c-completely regular if and only if O(X) is a c-completely regular frame.
Also, any c-completely regular frame is completely regular since a ≺≺c b implies a ≺≺ b.

Recall that a frame L is called zero-dimensional if each of its elements is a join complemented elements. In [15],
the authors show that the set CozcL is a base for a frame L if and only if L is a zero-dimensional frame. Now, since
a ∈ BL implies a ≺≺c a, and a ≺≺c b implies a ≺≺c s ≺≺c b with s ∈ CozcL, the following theorem is immediate.

Theorem 5.2. The following are equivalent for any frame L.

(1) L is a c-completely regular frame.

(2) CozcL is a base for L.

(3) L is a zero-dimensional frame.

Recall from [4] that a strong inclusion on a frame L is a binary relation / on L such that

(1) If x ≤ a / b ≤ y then x / y.

(2) / is a sublattice of L× L; that is ,0 / 0, 1 / 1 and if x / a, y / b then x ∨ y / a ∨ b, x ∧ y / a ∧ b.
(3) If a / b then a ≺ b.
(4) If a / b then there exists c with a / c / b (say / interpolates).

(5) If a / b then b∗ / a∗.

(6) For each a ∈ L, a =
∨
x/a

x.

Remark 5.3. By Theorem 3.6 and Corollary 3.11, we get that ≺≺c is a strong inclusion on a c-completely regular
frame.

Definition 5.4. An ideal I of a frame L is said to be c-completely regular if a ∈ I implies a ≺≺c b for some b ∈ I.
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We denote the set of all c-completely regular ideals of L by c− CRegId(L). Then c− CRegId(L) ⊆ βL, the
Stone-Čech compactification of L.

Lemma 5.5. For any frame L, the assignment a 7→ {x ∈ L : x ≺≺c a} defines a map rc : L → c− CRegId(L) such
that

(1) x ≺≺c a if and only if rc(x) ≺ rc(a) in c− CRegId(L).

(2) For each a, rc(a) =
∨

x≺≺ca
rc(x).

(3) For each a, rc(a) =
∨
{I ∈ c− CRegId(L) : I ≺ rc(a)}.

(4) rc is a right adjoint to
∨

.

(5) For any a ∈ L, we have rc(a
∗) =

(
rc(a)

)∗
.

(6) For any a, b ∈ CozcL, we have rc(a ∨ b) = rc(a) ∨ rc(b).

Proof . First, by conditions (1), (2), (4) of ≺≺c, we get that for each a, rc(a) ∈ c− CRegId(L). Hence, rc is a map.
Further

(1) Let x ≺≺c a be given. Then, by Theorem 3.6, there are u, v ∈ CozcL such that x ≺≺c u ≺≺c v ≺≺c a. So

v ∈ rc(a) andx ≺≺c a andu ≺ v ⇒ 1 = u∗ ∨ v ∈ rc(x∗) ∨ rc(a)

On the other hand, we get that rc(x) ∩ rc(x∗) = {0}. Hence, rc(x) ≺ rc(a).

Conversely, let rc(x) ≺ rc(a) in c− CRegId(L). Then there exists a c-completely regular ideal J such that
rc(x)∧ J = {0} and rc(a)∨ J = L. So,

∨
(rc(x) ∧ J) = 0, that is, x∧

∨
J = 0, and z ∨ t = 1 for some z ∈ rc(a), t ∈ J .

Thus x ∧ t = 0 and so x = x ∧ 1 = x ∧ (z ∨ t) = (x ∧ z) ∨ (x ∧ t) = x ∧ z. Hence x ≤ z and z ≺≺c a. So, x ≺≺c a.

(2) Let a ∈ L. Then for x ≺≺c a, by (1), rc(x) ≺ rc(a). Hence, rc(x) ⊆ rc(a). So
∨

x≺≺ca
rc(x) ⊆ rc(a). On the other

hand, for each x ∈ rc(a) we have x ≺≺c a, and so, by the property (4) of ≺≺c, there exists y with x ≺≺c y ≺≺c a. So,
x ∈ rc(y) ⊆

∨
x≺≺ca

rc(x). Thus, rc(a) ⊆
∨

x≺≺ca
rc(x). Hence, rc(a) =

∨
x≺≺ca

rc(x).

(3) Let a ∈ L. By (2), rc(a) =
∨

x≺≺ca
rc(x). But, by (1), if x ≺≺c a then rc(x) ≺ rc(a). So,

rc(a) =
∨

x≺≺ca

rc(x) ⊆
∨

rc(x)≺rc(a)

rc(x) ⊆
∨
{I ∈ c− CRegId(L) : I ≺ rc(a)}

But,
∨

I≺rc(a)
I ⊆ rc(a) is true since I ≺ rc(a) implies I ⊆ rc(a). Thus, rc(a) =

∨
{I ∈ c− CRegId(L) : I ≺ rc(a)}.

(4) rc is a right adjoint to
∨

, since for every c-completely regular ideal J and a ∈ L, we have∨
J ≤ a⇔ J ⊆ rc(a)

because if
∨
J ≤ a and x ∈ J then x ≺≺c z for some z ∈ J and hence x ≺≺c

∨
J , which implies x ≺≺c a, and if

J ⊆ rc(a) then
∨
J ≤

∨
rc(a) ≤ a.

(5) Since rc preserves zero and arbitrary meets, we would have

rc(a) ∧ rc(a∗) = rc(a ∧ a∗) = rc(0) = {0},

showing that rc(a
∗) ≤

(
rc(a)

)∗
. This establishes the inclusion ⊆. Next, since

0 =
∨
{0} =

∨(
rc(a) ∧

(
rc(a)

)∗)
=
∨
rc(a) ∧

∨(
rc(a)

)∗
= a ∧

∨(
rc(a)

)∗
,

we have
∨(

rc(a)
)∗ ≤ a∗. Thus, by (4),

(
rc(a)

)∗ ≤ rc(a∗), proving the other inclusion.

(6) First note that x ≺c a∨ b implies that x ≺c u∨ b for some u ∈ CozcL such that u ≺c a. For this, let t ∈ CozcL
such that x ∧ t = 0 and t ∨ a ∨ b = 1. Since CozcL is normal, take u, v ∈ CozcL such that a ∨ v = 1 = t ∨ u ∨ b and
u ∧ v = 0 to obtain x ≺c u ∨ b, u ∈ CozcL, and u ≺c a. It follows now that x ≺≺c a ∨ b implies x ≤ u ∨ v for suitable
u, v ∈ CozcL such that u ≺c a and v ≺c b, showing that rc(a ∨ b) ⊆ rc(a) ∨ rc(b) since ≺c=≺≺c in CozcL. The revers
inclusion is immediate, and so rc(a ∨ b) = rc(a) ∨ rc(b). �
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Lemma 5.6. For any frame L, the following statements are true.

(1) c− CRegId(L) is a compact regular frame.

(2) If L is c-completely regular, then
∨

: c− CRegId(L)→ L is a compactification for L.

Proof . (1). First we show that c− CRegId(L) is a subframe of Id(L). Since 0 ≺≺c 0 and 1 ≺≺c 1, we get that {0}
and L are c-completely regular. Now, let I, J ∈ c− CRegId(L). Then, for x ∈ I ∩ J there exist y ∈ I and z ∈ J
such that x ≺≺c y and x ≺≺c z. Hence x ≺≺c y ∧ z (since ≺≺c is a sublattice of L × L), where y ∧ z ∈ I ∩ J . Thus,
I ∩J ∈ c− CRegId(L). Also, for x = y∨ z ∈ I ∨J with y ∈ I, z ∈ J there exist s ∈ I and t ∈ J such that y ≺≺c s and
z ≺≺c t. Thus x = y ∨ z ≺≺c s ∨ t, where s ∨ t ∈ I ∨ J . Hence I ∨ J ∈ c− CRegId(L). Finally, if D ⊆ c− CRegId(L)
is directed then

∨
D =

⋃
D ∈ c− CRegId(L). Therefore, c− CRegId(L) is a subframe of Id(L).

Now, since Id(L) is a compact frame, we conclude that c− CRegId(L) is compact. Also, for every J ∈ c− CRegId(L),
we clearly have J =

∨
rc(a)⊆J

rc(a). So, using part (3) of 5.5, for each J ∈ c− CRegId(L), we have

J =
∨

rc(a)⊆J
rc(a) =

∨
rc(a)⊆J

(
∨
{I ∈ c− CRegId(L) : I ≺ rc(a)})

=
∨
{I ∈ c− CRegId(L) : I ≺ J} .

Thus c− CRegId(L) is a regular frame.

(2) Since for each a ∈ L, a =
∨
rc(a), we conclude that

∨
: c− CRegId(L) → L is onto, and hence it is a

compactification for L. �

We note that for any a and x in a frame L, if rc(x) ≺≺c rc(a) in c− CRegId(L), then part (1) of Lemma 5.5 implies
that x ≺≺c a. For the converse, we give the next lemma.

Lemma 5.7. For any frame L, if c− CRegId(L) is a c-completely regular frame, then for any a and x in a frame L,
x ≺≺c a implies that rc(x) ≺≺c rc(a) in c− CRegId(L).

Proof . Let x ≺≺c a be given. Then, by part (1) of Lemma 5.5, rc(x) ≺ rc(a) in c− CRegId(L). Since c− CRegId(L)
is a compact c-completely regular frame, we conclude from Corollary 4.3 that rc(x) ≺≺c rc(a) in c− CRegId(L) �

Theorem 5.8. For any frame L, c− CRegId(L) is a c-completely regular frame if and only if t ≺≺c a implies that
rc(t) ≺≺c rc(a) in c− CRegId(L) for any a in a frame L and t ∈ CozcL.

Proof . The ‘if’ part is true by the forgoing lemma. To prove the ‘only if’ part, let I ∈ c− CRegId(L) and x ∈ I. Then
there is an element y in I such that x ≺≺c y, and hence, by Corollary 3.7, x ≺≺c t ≺≺c y for some t ∈ CozcL. Hence
x ∈ rc(t) and by the present hypothesis , rc(t) ≺≺c rc(y). But y ∈ I and hence rc(y) ⊆ I. Thus rc(t) ≺≺c rc(y) ⊆ I
which implies rc(t) ≺≺c I. Therefore, I =

∨
J≺≺cI

J as required. �

Let L be a c-completely regular frame. We write βcL for the compactification c− CRegId(L). It is known that the
coreflection map

∨
: Id(BL)→ L is a compactification for a frame L if and only if L is zero-dimensional. We denote

this compactification by β0L. Now, by [4, Page 110], we can infer that βcL ∼= β0L.

We now move to open and closed quotients. That is, we aim to show that if L is a c-completely regular frame and
a ∈ L, then ↓a and ↑ a are c-completely regular frames. We begin with the following lemma.

Lemma 5.9. Let f : L→M be any frame map. Then

(1) f preserves ≺c.
(2) f preserves ≺≺c.
(3) If I is a c-completely regular ideal of L, then < f(I) > is a c-completely regular ideal of M .

(4) If L is c-completely regular, then f(L) is c-completely regular.

Proof . (1). Let a, b ∈ L with a ≺c b be given. Then there exists x ∈ CozcL such that a∧ x = 0 and x∨ b = 1. Then
there exists a family {xn}n∈N ⊆ BL such that x =

∨∞
n=1 xn. Since {f(xn)}n∈N ⊆ BL, f(x) =

∨∞
n=1 f(xn) ∈ Cozc(L),

f(a) ∧ f(x) = 0 and f(x) ∨ f(b) = 1, we conclude that f(a) ≺c f(b).
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(2). Let a, b ∈ L with a ≺≺c b be given. Then there exists a c-scale {xq : q ∈ [0, 1] ∩Q} between a and b. By part
(1), {f(xq) : q ∈ [0, 1] ∩Q} is a c-scale between f(a) and f(b). Hence, f(a) ≺≺c f(b).

(3). Let I be a c-completely regular ideal of L and x ∈< f(I) >. Then there exists a ∈ I with x ≤ f(a). Since
a ∈ I, there exists z ∈ I with a ≺≺c z. Now, using (2), x ≤ f(a) ≺≺c f(z). Hence x ≺≺c f(z), where f(z) ∈< f(I) >,
which shows that < f(I) > is a c-completely regular ideal.

(4). By part (2), it is evident. �

The above lemma allow us to obtain the following theorem.

Theorem 5.10. Let L be a c-completely regular frame and a ∈ L.Then ↓a and ↑ a are c-completely regular frames.

We close this section by the following proposition.

Proposition 5.11. If L is compact c-completely regular, then J = rc(
∨
J) for every J ∈ c− CRegId(L).

Proof . For x ∈ J , there exists z ∈ J such that x ≺≺c z ≤
∨
J , which implies that x ∈ rc(

∨
J). Hence, J ⊆ rc(

∨
J).

Let x ∈ rc(
∨
J) be given. Then

x ≺≺c
∨
J ⇒ x ≺c

∨
J

⇒ 1 = x∗ ∨
∨
J =

∨
z∈J x

∗ ∨ z
⇒ ∃z ∈ J(1 = x∗ ∨ z)
⇒ ∃z ∈ J(x ≺ z)
⇒ ∃z ∈ J(x ≤ z)
⇒ x ∈ J.

Consequently, J = rc(
∨
J). �

Acknowledgements: Thanks are due to the referee for helpful comments that have improved the readability of this
paper.
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