On c-completely regular frames

Mostafa Abedia,*, Ali Akbar Estaji ${ }^{\text {b }}$
${ }^{a}$ Esfarayen University of Technology, Esfarayen, North Khorasan, Iran
${ }^{b}$ Faculty of Mathematics and Computer Science, Hakim Sabzevari University, Sabzevar, Iran

(Communicated by Ghadir Sadeghi)

Abstract

Motivated by definitions of countable completely regular spaces and completely below relations of frames, we define what we call a c-completely below relation, denoted by \prec_{c}, in between two elements of a frame. We show that $a \nprec_{c} b$ for two elements a, b of a frame L if and only if there is $\alpha \in \mathcal{R} L$ such that $\operatorname{coz}(\alpha) \wedge a=0$ and $\operatorname{coz}(\alpha-\mathbf{1}) \leq b$ where the set $\{r \in \mathbb{R}: \operatorname{coz}(\alpha-\mathbf{r}) \neq 1\}$ is countable. We say a frame L is a c-completely regular frame if $a=\bigvee_{x \nless c a} x$ for any $a \in L$. It is shown that a frame L is a c-completely regular frame if and only if it is a zero-dimensional frame. An ideal I of a frame L is said to be c-completely regular if $a \in I$ implies $a \nless_{c} b$ for some $b \in I$. The set of all c-completely regular ideals of a frame L, denoted by c $-\operatorname{CRegId}(L)$, is a compact regular frame and it is a compactification for L whenever it is a c-completely regular frame. We denote this compactification by $\beta_{c} L$ and it is isomorphic to the frame $\beta_{0} L$, that is, Stone-Banaschewski compactification of L. Finally, we show that open and closed quotients of a c-completely regular frame are c-completely regular.

Keywords: Frame; c-completely regular frame and space; c-completely below relation; c-completely regular ideals; Zero-dimensional frame; Compactification of frame.
MSC 2020: Primary: 06D22, Secondary: 54C30, 54C05, 16H20.

1 Introduction

As usual, let $C(X)$ be the ring of all continuous real-valued functions on a completely regular space X. In [12, the authors introduced and studied the subalgebra $C_{c}(X)$ of $C(X)$ consisting of elements with a countable range. In that paper, a Hausdorff space X is called countable completely regular (briefly, c-completely regular) if whenever $F \subseteq X$ is a closed set and $x \notin F$, then there exists $f \in C_{c}(X)$ with $f(F)=0$ and $f(x)=1$. Equivalently, a Hausdorff space X is c-completely regular if whenever $F \subseteq X$ is a closed set and $x \notin F$, then there exist $g, h \in C_{c}(X)$ with $x \in X \backslash Z(h) \subseteq Z(g) \subseteq X \backslash F$. Therefore, a Hausdorff space X is c-completely regular if and only if for any open set V of X, there is $\left\{\left(U_{i}, f_{i}\right)\right\}_{i \in I} \subseteq \mathfrak{O}(X) \times C_{c}(X)$ such that $U_{i} \cap \operatorname{coz}\left(f_{i}\right)=\emptyset, \operatorname{coz}\left(f_{i}-\mathbf{1}\right) \subseteq V$ and $V=\bigcup_{i \in I} U_{i}$. The frame of open subsets of a topological space X is denoted by $\mathfrak{O}(X)$.

A frame is a complete lattice L in which

$$
a \wedge \bigvee S=\bigvee_{s \in S} a \wedge s
$$

[^0]for any $a \in L$ and $S \subseteq L, \wedge$ and \bigvee implicating meet and join in L, as usual. We use 0 and 1 for the bottom element and the top element of L, respectively. Let $\mathcal{R} L$ be the ring of all continuous real-valued functions on a completely regular frame L (see [2, 3] for details). For any $\alpha \in \mathcal{R} L$, let $R_{\alpha}=\{r \in \mathbb{R}: \operatorname{coz}(\alpha-\mathbf{r}) \neq 1\}$ (see [9]). The authors in [10, 11, 15] study the set $\mathcal{R}_{c}(L)=\left\{\alpha \in \mathcal{R} L: R_{\alpha}\right.$ is countable $\}$ as a sub- f-ring of $\mathcal{R} L$ (also, see [6, 7, 8]). When we study the ring $\mathcal{R}_{c}(L)$, we can assume that L is a zero-dimensional (c-completely regular) frame because, in [15, it is shown that for any frame L there exists a zero-dimensional frame M which is a continuous image of L and $\mathcal{R}_{c}(L) \cong \mathcal{R}_{c}(M)$. In 10, it is shown that $\operatorname{Coz}_{c} L=\left\{\operatorname{coz}(\alpha): \alpha \in \mathcal{R}_{c}(L)\right\}$ is a sub- σ-frame of L.

As usual, the rather below and the completely below relations denoted by \prec and \prec, respectively. Let L be a frame. Recall that $a \prec b$ in case there is an element $c \in L$ such that $a \wedge c=0$ and $c \vee b=1$. Motivated by this definition, in Definition 3.1, a c-rather below relation of L is defined. Some lattice-theoretic properties of this relation are given in Theorem 3.2. Recall that $a \nless b$ in case there are elements $\left(x_{q}\right)$ indexed by the rational numbers $[0,1] \cap \mathbb{Q}$ such that $a=x_{0}, b=x_{1}$ and $x_{p} \prec x_{q}$ for $p<q$. In Definition 3.5, we define a c-completely below relation of L and we summarize the lattice-theoretic properties of this relation in Theorem 3.6. We show that the relations of \prec, \prec, \prec_{c} and \prec_{c} are equal for compact c-regular frames (Corollary 4.3)

The main interest of the completely below relation, however, lies in its connection with continuous $\mathcal{L}(\mathbb{R})$-valued maps, as indicated by the following theorem (see [2, Poroposition 2.1.4] and [14, IV 1.4]).

Theorem 1.1. The following are equivalent for any $a, b \in L$.
(1) $a \nprec b$.
(2) There is $\alpha \in \mathcal{R} L$ such that $\operatorname{coz}(\alpha) \wedge a=0$ and $\operatorname{coz}(\alpha-\mathbf{1}) \leq b$. Such a map can be chosen to satisfy $\mathbf{0} \leq \alpha \leq \mathbf{1}$ when it exists.
(3) There is some $c \in \operatorname{Coz} L$ such that $a \prec c \prec b$.

This theorem is extended to the c-completely below relation in Theorem 3.9
We define and study c-completely regular frames in the last section. For any frame L, the assignment $a \mapsto\{x \in$ $\left.L: x \nprec_{c} a\right\}$ defines a map $r_{c}: L \rightarrow \mathrm{c}-\operatorname{CRegId}(L)$ such that r_{c} is a right adjoint to \bigvee. Some properties of this map are given in Lemma 5.5. We show that $\mathrm{c}-\operatorname{CRegId}(L)$ is a compact regular frame and $\bigvee: \mathrm{c}-\operatorname{CRegId}(L) \rightarrow L$ is a compactification of L if it is a c-completely regular frame (Lemma 5.6. In Theorem 5.8, it is shown that for any frame $L, \mathrm{c}-\operatorname{CRegId}(L)$ is a c-completely regular frame if and only if $t \nprec_{c} a$ implies that $r_{c}(t) \nprec_{c} r_{c}(a)$ in $\mathrm{c}-\operatorname{CRegId}(L)$ for any $a \in L$ and $t \in \mathrm{Coz}_{c} L$. Finally we show that any frame map preserves \prec_{c} and \prec_{c}, and hence, any homomorphic image of a c-completely regular frame is a c-completely regular frame (see Lemma 5.9).

2 Preliminaries

2.1 Frames

For a general theory of frames and locales, we refer to [13, 14]. A frame or locale L is a complete lattice in which finite meets distribute over arbitrary joins.

A frame L is said to be compact if whenever $1=\bigvee S$, for $S \subseteq L$, then $1=\bigvee T$ for some finite subset $T \subseteq S$. A frame homomorphism (or frame map) is a map between frames which preserves finite meets and arbitrary joins. Frame homomorphisms which are onto will frequently be referred to as quotient maps. In particular, for any $a \in L$, the open and closed quotients are defined by $\downarrow a=\{x \in L: x \leq a\}$ and $\uparrow a=\{x \in L: a \leq x\}$, respectively. A homomorphism is called dense if it maps only the bottom element to the bottom element. A compactification of L is a dense onto homomorphism $h: M \rightarrow L$ with compact regular domain.

An ideal, in any bounded distributive lattice A, is a subset $I \subseteq A$ such that $\bigvee J \in I$ for any finite $J \subseteq I$, and $x \in I$ whenever $x \leq y$ and $y \in I$. The set $I d(A)$ of all ideals of A is a frame, with \leq as inclusion and the ideal generated by $\bigcup I_{\alpha}$ as $\bigvee I_{\alpha}$, and $\bigwedge I_{\alpha}=\bigcap I_{\alpha}$. Also, for every $I, J \in I d(A)$

1. $I \wedge J=I \cap J=\{a \wedge b: a \in I, b \in J\}$.
2. $I \vee J=\{a \vee b: a \in I, b \in J\}$.

The pseudocomplement of an element a in a frame L, denoted by a^{*}, is the element

$$
a^{*}=\bigvee\{x \in L: a \wedge x=0\}
$$

An element $a \in L$ is called complemented if $a \vee a^{*}=1$. We write

$$
B L=\left\{a \in L: a \vee a^{*}=1\right\}
$$

for the set of all complemented elements of L and, clearly, it is a sublattice of L.

2.2 The ring $\mathcal{R}_{c}(L)$

The ring $\mathcal{R}_{c}(L)=\left\{\alpha \in \mathcal{R} L: R_{\alpha}\right.$ is countable $\}$, where $R_{\alpha}=\{r \in \mathbb{R}: \operatorname{coz}(\alpha-\mathbf{r}) \neq 1\}$, has been studied as a sub- f-ring of $\mathcal{R} L$ (see [10, 15] for details).

Recall that a σ-frame is a bounded distributive lattice in which every countable subset has a join and binary meet distributes over these joins, and regularity (complete regularity) of a σ-frame is the countable counterparts of regularity (complete regularity) of frames, that is, $a=\bigvee_{a_{n} \prec a} a_{n}\left(a=\bigvee_{a_{n} \preccurlyeq a} a_{n}\right)$ for each element a.

In [10], it is shown that $\operatorname{Coz}_{c} L=\left\{\operatorname{coz}(\alpha): \alpha \in \mathcal{R}_{c}(L)\right\}$ is a sub- σ-frame of L such that

$$
s \in \mathrm{Coz}_{c} L \Leftrightarrow s=\bigvee_{n=1}^{\infty} s_{n}, \text { where } s_{n} \in B L
$$

This is to say that $\mathrm{Coz}_{c} L$ is a regular sub- σ-frame of L and hence, by [5] we deduce that it is normal (that is, given a an b with $a \vee b=1$, we can find c and d such that $c \wedge d=0$ and $a \vee c=1=b \vee d$). So, in $\operatorname{Coz}_{c} L$, we have $\prec=\prec$. We note that $B L \subseteq \mathrm{Coz}_{c} L$ for any frame L.

3 c-completely below relation

Recall that $a \prec b$ in case there is an element $c \in L$ such that $a \wedge c=0$ and $c \vee b=1$. This motivates the following definition.

Definition 3.1. Let L be a frame and $a, b \in L$. We define the order \prec_{c} on L by

$$
a \prec_{c} b \Leftrightarrow \text { there exists } x \in \operatorname{Coz}_{c} L \text { such that } a \wedge x=0 \text { and } x \vee b=1 \text {. }
$$

If $a \prec_{c} b$ we say that a is c-rather below b.
We note that $0 \prec_{c} a$ and $a \prec_{c} 1$ for any $a \in L$. It is clear that if $a, b \in \mathrm{Coz}_{c} L$, then $a \prec_{c} b$ if and only if $a \prec b$ in $\mathrm{Coz}_{c} L$. We collect some lattice-theoretic properties of the c-rather below relation in the next theorem.

Theorem 3.2. Let L be a frame and $a, b, c, d \in L$.
(1) If $a \prec_{c} b$, then $a \prec b$.
(2) If $a \prec_{c} b$, then there exists $x \in \mathrm{Coz}_{c} L$ such that $a \leq x^{*} \prec b$.
(3) $a \prec_{c} a$ if and only if a is complemented.
(4) If $a \leq c \prec_{c} d \leq b$, then $a \prec_{c} b$.
(5) If $a \leq b$ and b is complemented, then $a \prec_{c} b$.
(6) If $a \prec_{c} b$ and $c \prec_{c} d$, then $a \vee c \prec_{c} b \vee d$ and $a \wedge c \prec_{c} b \wedge d$.
(7) $a \vee b \prec_{c} c \Leftrightarrow a \prec_{c} c, b \prec_{c} c$.
(8) $c \prec_{c} a \wedge b \Leftrightarrow c \prec_{c} a, c \prec_{c} b$.

Proof . The proof of (1) is obvious.
(2) Let $a, b \in L$ with $a \prec_{c} b$ be given. Then there exits $x \in \operatorname{Coz}_{c} L$ such that $a \wedge x=0$ and $x \vee b=1$. The latter implies that

$$
1=x \vee b \leq x^{* *} \vee b .
$$

This means that $x^{*} \prec b$. By the former case, we have $a \leq x^{*}$. Thus $a \leq x^{*} \prec b$ with $x \in \mathrm{Coz}_{c} L$.
(3) We have $a \in B L$ if and only if $a^{*} \vee a=1$ and $a^{*} \wedge a=0$. On the other hand, if $a \in B L$, then $a, a^{*} \in \operatorname{Coz}_{c} L$. Thus it is clear that $a \prec_{c} a$ if and only if a is complemented.
(4) Since $c \prec_{c} d$, then there exits $x \in \mathrm{Coz}_{c} L$ such that $c \wedge x=0$ and $x \vee d=1$. But $a \leq c$ and $d \leq b$ imply that $a \wedge x \leq c \wedge x=0$ and $1=x \vee d \leq x \vee b$. Hence $a \wedge x=0$ and $x \vee b=1$ with $x \in \operatorname{Coz}_{c} L$. This means that $a \prec_{c} b$.
(5) Let $a \leq b$ and b be complemented. Then by (3), $b \prec_{c} b$. So by (4), $a \prec_{c} b$.
(6) Let $a \prec_{c} b$ and $c \prec_{c} d$. Then there exist $x, y \in \mathrm{Coz}_{c} L$ such that $a \wedge x=0, c \wedge y=0, b \vee x=1$, and $d \vee y=1$. Now,

$$
(a \vee c) \wedge(x \wedge y)=(a \wedge x \wedge y) \vee(c \wedge x \wedge y)=0 \vee 0=0
$$

and

$$
(b \vee d) \vee(x \wedge y)=(b \vee d \vee x) \wedge(b \vee d \vee y)=1 \wedge 1=1
$$

imply that $a \vee c \prec_{c} b \vee d$ since $x \wedge y \in \mathrm{Coz}_{c} L$. Also,

$$
(a \wedge c) \wedge(x \vee y)=(a \wedge c \wedge x) \vee(a \wedge c \wedge y)=0 \vee 0=0
$$

and

$$
(b \wedge d) \vee(x \vee y)=(b \vee x \vee y) \wedge(d \vee x \vee y)=1 \wedge 1=1
$$

imply that $a \wedge c \prec_{c} b \wedge d$ since $x \vee y \in \mathrm{Coz}_{c} L$.
(7) Since $a, b \leq a \vee b$, by (4), we get that if $a \vee b \prec_{c} c$ then $a \prec_{c} c$ and $b \prec_{c} c$. The converse follows by (6).
(8) Since $a \wedge b \leq a, b$, by (4), we get that if $c \prec_{c} a \wedge b$ then $c \prec_{c} a$ and $c \prec_{c} b$. The converse follows by (6).

Corollary 3.3. Let L be a frame, $a \in L$ and T be a finite subset of L. Then
(1) $\bigvee T \prec_{c} a \Leftrightarrow t \prec_{c} a$, for all $t \in T$.
(2) $a \prec_{c} \bigwedge T \Leftrightarrow a \prec_{c} t$, for all $t \in T$.

In a frame L, a scale from a to b is a subset

$$
\left\{x_{q}: q \in[0,1] \cap \mathbb{Q}\right\} \subseteq L,
$$

indexed by the rational interval $[0,1] \cap \mathbb{Q}$ such that $a=x_{0}, b=x_{1}$, and $x_{p} \prec x_{q}$ whenever $p<q$ in $[0,1] \cap \mathbb{Q}$.
Definition 3.4. Let a and b be two elements of a frame L. A c-scale from a to b is a subset

$$
\left\{x_{q}: q \in[0,1] \cap \mathbb{Q}\right\} \subseteq L,
$$

indexed by the rational interval $[0,1] \cap \mathbb{Q}$ such that $a=x_{0}, b=x_{1},\left\{x_{q}: q \in(0,1) \cap \mathbb{Q}\right\} \subseteq \operatorname{Coz}_{c} L$ and $x_{p} \prec_{c} x_{q}$ whenever $p<q$ in $[0,1] \cap \mathbb{Q}$.

In the following definition, as stated in the abstract, we shall use definitions of countable completely regular spaces and completely below relations of a frame L to define a c-completely below relation of L which will be the subject of study in this paper.

Definition 3.5. Let L be a frame and $a, b \in L$. We say that a is c-completely below b, and write $a \nless{ }_{c} b$, if there is a c-scale from a to b.

Clearly, $0 \nprec \prec_{c} a$ and $a \nprec_{c} 1$ for any $a \in L$. Clearly, $a \nprec_{c} b$ implies $a \prec b$. The following theorem gives some lattice-theoretic properties of the c-completely below relation.

Theorem 3.6. Let L be a frame and $a, b, c, d \in L$.
(1) If $a \nprec_{c} b$, then $a \prec_{c} b$.
(2) $a \nprec_{c} a$ if and only if a is complemented.
(3) If $a \leq c \prec_{c} d \leq c$, then $a \nless_{c} b$.
(4) If $a \nprec_{c} b$ and $c \prec_{c} d$, then $b \vee d \prec_{c} a \vee c$ and $b \wedge d \nprec \prec_{c} a \wedge c$.
(5) If $a \nprec_{c} b$ then there exists $s \in \operatorname{Coz}_{c} L$ with $a \nprec_{c} s \nprec_{c} b$.
(6) $a \vee b \nprec_{c} c \Leftrightarrow a \prec_{c} c, b \nprec_{c} c$.
(7) $c \nprec_{c} a \wedge b \Leftrightarrow c \nprec_{c} a, c \nprec_{c} b$.
(8) The set $\left\{x \in L: x \nprec_{c} a\right\}$ is an ideal of L.

Proof . The proof of (1), (2) and (3) is clear.
(4). Let $a \nprec_{c} b$ and $c \prec_{c} d$. Let $\left\{x_{q}: q \in[0,1] \cap \mathbb{Q}\right\}$ be a c-scale from a to b, and $\left\{y_{q}: q \in[0,1] \cap \mathbb{Q}\right\}$ be a c-scale from c to d. Then Theorem 3.2 (6) shows that $\left\{x_{q} \vee y_{q}: q \in[0,1] \cap \mathbb{Q}\right\}$ be a c-scale from $a \vee b$ to $c \vee d$, and $\left\{x_{q} \wedge y_{q}: q \in[0,1] \cap \mathbb{Q}\right\}$ be a c-scale from $a \wedge b$ to $c \wedge d$. Hence $b \vee d \nprec{ }_{c} a \vee c$ and $b \wedge d \nprec{ }_{c} a \wedge c$.
(5). Let $\left\{x_{q}: q \in[0,1] \cap \mathbb{Q}\right\}$ be a c-scale between a and b. Then we can take $x_{\frac{1}{2}}$ to be s, and use the c-scales $\left\{x_{\frac{q}{2}}: q \in[0,1] \cap \mathbb{Q}\right\}$ and $\left\{x_{\frac{q+1}{2}}: q \in[0,1] \cap \mathbb{Q}\right\}$ to show $a \nprec_{c} s$ and $s \nprec_{c} b$, respectively.
(6). By (3) and (4) is obvious.
(7). By (3) and (4) is obvious.
(8). $\mathrm{By}(6)$ is obvious.

An immediate corollary to the foregoing lemma is the following.
Corollary 3.7. Let L be a frame and $a, b \in L$. Then $a \nprec_{c} b$ if and only if there exists $s \in \mathrm{Coz}_{c} L$ such that $a<_{c} s \prec_{c} b$.

The main interest of the \prec_{c} relation, however, lies in its connection with continuous $\mathcal{L}(\mathbb{R})$-valued maps, as indicated by the following theorem. We begin with the next lemma. This lemma was also proved in [1 although it was stated slightly differently there. Here we state it in a manner we shall find useful.

Lemma 3.8. Suppose $\operatorname{coz}(\varphi) \prec_{c} \operatorname{coz}(\delta)$.
(1) If $\varphi, \delta \in \mathcal{R} L$, then there exists an invertible element $\rho \in \mathcal{R} L$ such that $\varphi=\varphi \rho \delta^{2}$.
(2) If $\varphi \in \mathcal{R} L$ and $\delta \in \mathcal{R}_{c}(L)$, then there exists an invertible element $\rho \in \mathcal{R}_{c}(L)$ such that $\varphi=\varphi \rho \delta^{2}$.

Proof . (1). Since $\operatorname{coz}(\varphi) \prec_{c} \operatorname{coz}(\delta)$, we can find $\alpha \in \mathcal{R}_{c}(L)$ such that $\operatorname{coz}(\varphi) \wedge \operatorname{coz}(\alpha)=0$ and $\operatorname{coz}(\alpha) \vee \operatorname{coz}(\delta)=1$. The latter implies that

$$
1=\operatorname{coz}(\alpha) \vee \operatorname{coz}(\delta)=\operatorname{coz}\left(\alpha^{2}\right) \vee \operatorname{coz}\left(\delta^{2}\right)=\operatorname{coz}\left(\alpha^{2}+\delta^{2}\right),
$$

this means that $\alpha^{2}+\delta^{2}$ is invertible. By the former case, we have $\operatorname{coz}(\varphi \alpha)=0$, that is, $\varphi \alpha=\mathbf{0}$. Putting $\rho=\frac{1}{\alpha^{2}+\delta^{2}}$, we then have

$$
\varphi=\varphi \frac{\alpha^{2}+\delta^{2}}{\alpha^{2}+\delta^{2}}=\frac{\varphi \delta^{2}}{\alpha^{2}+\delta^{2}}=\varphi \rho \delta^{2}
$$

(2). Similar to (1).

Recall from [3, Lemma 6] that for any $\alpha \in \mathcal{R} L$ and any $p, q \in \mathbb{Q}$,

$$
\alpha(p, q)=\operatorname{coz}\left((\alpha-\mathbf{p})^{+} \wedge(\mathbf{q}-\alpha)^{+}\right) .
$$

So, $\alpha(p, q) \in \mathrm{Coz}_{c} L$ whenever $\alpha \in \mathcal{R}_{c}(L)$. We shall use this fact in part of the proof below.
Theorem 3.9. The following are equivalent for any $a, b \in L$.
(1) $a \nprec_{c} b$.
(2) There are $c, d \in \mathrm{Coz}_{c} L$ such that $a \leq c \prec_{c} d \leq b$.
(3) There are $c \in \operatorname{Coz} L$ and $d \in \operatorname{Coz}_{c} L$ such that $a \leq c \prec_{c} d \leq b$.
(4) There is $\alpha \in \mathcal{R}_{c}(L)$ such that $\operatorname{coz}(\alpha) \wedge a=0$ and $\operatorname{coz}(\alpha-\mathbf{1}) \leq b$. Such a map can be chosen to satisfy $\mathbf{0} \leq \alpha \leq \mathbf{1}$ when it exists.

Proof . (1) \Rightarrow (2). By Theorem 3.6(5) is clear.
$(2) \Rightarrow(3)$. Since $\mathrm{Coz}_{c} L \subseteq \operatorname{Coz} L$, it is obvious.
(3) \Rightarrow (4). Take $\varphi \in \mathcal{R} L$ and $\delta \in \mathcal{R}_{c}(L)$ such that $c=\operatorname{coz}(\varphi)$ and $d=\operatorname{coz}(\delta)$. Then Lemma 3.8 (2) shows that $\varphi=\varphi \rho \delta^{2}$ for some invertible element $\rho \in \mathcal{R}_{c}(L)$. Putting $\alpha=1-\rho \delta^{2}$, then we have $\alpha \in \mathcal{R}_{c}(L)$ such that

$$
\operatorname{coz}(\alpha) \wedge a \leq \operatorname{coz}(\alpha) \wedge c=\operatorname{coz}(\alpha) \wedge \operatorname{coz}(\varphi)=\operatorname{coz}(\alpha \varphi)=0
$$

and

$$
\operatorname{coz}(\alpha-\mathbf{1})=\operatorname{coz}\left(-\rho \delta^{2}\right)=\operatorname{coz}(-\rho) \wedge \operatorname{coz}\left(\delta^{2}\right)=1 \wedge \operatorname{coz}(\delta)=\operatorname{coz}(\delta)=d \leq b
$$

(4) \Rightarrow (1). Let α satisfies (4). Define $x_{0}=a, x_{1}=b$, and $x_{q}=\alpha(-, q)$ for $q \in(0,1) \cap \mathbb{Q}$. We claim that the subset $\left\{x_{q}: q \in[0,1] \cap \mathbb{Q}\right\} \subseteq L$ is a c-scale between a and b. That is because:
a: $x_{q}=\alpha(-, q) \in \mathrm{Coz}_{c} L$ for $q \in(0,1) \cap \mathbb{Q}$.
b: $x_{p} \prec_{c} x_{q}$ whenever $p<q$ in $(0,1) \cap \mathbb{Q}$ since $\alpha(p,-) \in \operatorname{Coz}_{c} L$ with $x_{p} \wedge \alpha(p,-)=\alpha(-, p) \wedge \alpha(p,-)=0$ and $x_{q} \vee \alpha(p,-)=\alpha(-, q) \vee \alpha(p,-)=1$.
$\mathrm{c}: x_{0} \prec_{c} x_{q}$ whenever $0<q$ since $\operatorname{coz}(\alpha) \in \operatorname{Coz}_{c} L$ with $x_{0} \wedge \operatorname{coz}(\alpha)=a \wedge \operatorname{coz}(\alpha)=0$ and $x_{q} \vee \operatorname{coz}(\alpha)=$ $\alpha(-, q) \vee \alpha((-, 0) \vee(0,-))=1$.
d: $x_{q} \prec_{c} x_{1}$ whenever $q<1$ since $\alpha(q,-) \in \operatorname{Coz}_{c} L$ with $x_{q} \wedge \alpha(q,-)=\alpha(-, q) \wedge \alpha(q,-)=0$ and $x_{1} \vee \alpha(q,-)=$ $b \vee \alpha(q,-) \geq \operatorname{coz}(\alpha-\mathbf{1}) \vee \alpha(q,-)=\alpha((-, 1) \vee(1,-)) \vee \alpha(q,-)=1$.

An immediate corollary to the foregoing lemma is the following.
Corollary 3.10. Let L be a frame and $a, b \in \operatorname{Coz}_{c} L$. Then $a \nprec_{c} b$ if and only if $a \prec_{c} b$ if and only if $a \prec b$ in $\mathrm{Coz}_{c} L$.
For the following, recall that if $a \nprec b$ in a frame L, then $b^{*} \nprec a^{*}$ in L.
Corollary 3.11. Let L be a frame and $a, b \in L$. If $a \prec_{c} b$ in L, then $b^{*} \nprec_{c} a^{*}$ in L.
Proof . Let $a \nprec{ }_{c} b$ in L. Then Theorem 3.9 shows that there is some $\alpha \in \mathcal{R}_{c}(L)$ such that $a \wedge \operatorname{coz}(\alpha)=0$ and $\operatorname{coz}(\alpha-\mathbf{1}) \leq b$. Take $\beta=\mathbf{1}-\alpha$. Then we would have

$$
b^{*} \wedge \operatorname{coz}(\beta)=b^{*} \wedge \operatorname{coz}(\mathbf{1}-\alpha)=b^{*} \wedge \operatorname{coz}(\alpha-\mathbf{1}) \leq b^{*} \wedge b=0
$$

and

$$
\operatorname{coz}(\beta-\mathbf{1})=\operatorname{coz}(\mathbf{1}-\alpha-\mathbf{1})=\operatorname{coz}(-\alpha)=\operatorname{coz}(\alpha) \leq a^{*}
$$

Since $\beta=\mathbf{1}-\alpha \in \mathcal{R}_{c}(L)$, Theorem 3.9 shows that $b^{*} \nprec{ }_{c} a^{*}$ in L.

$4 \boldsymbol{c}$-regular frames

A frame L is called regular if for every $a \in L$ we have $a=\bigvee_{x \prec a} x$. This motivates the following definition.
Definition 4.1. A frame L is called c-regular if for every $a \in L$ we have

$$
a=\bigvee_{x \prec_{c} a} x
$$

Lemma 4.2. Let L be a compact c-regular frame and $x \prec a \vee b$ in L. Then there exists an element c in L such that $x \prec a \vee c$ and $c \prec_{c} b$.

Proof . Since $x \prec a \vee b$, we have $x^{*} \vee(a \vee b)=1$. Since L is c-regular, $b=\bigvee_{z \prec_{c} b} z$. Now

$$
1=x^{*} \vee(a \vee b)=\left(x^{*} \vee a\right) \vee b=\left(x^{*} \vee a\right) \vee \bigvee_{z \prec b} z=\bigvee_{z \prec b}\left(x^{*} \vee a\right) \vee z
$$

But L is compact, so there exist z_{1}, \ldots, z_{n} in L such that $z_{i} \prec_{c} b(1 \leq i \leq n)$ and

$$
1=\left(x^{*} \vee a \vee z_{1}\right) \vee \cdots \vee\left(x^{*} \vee a \vee z_{n}\right)=x^{*} \vee a \vee\left(z_{1} \vee \cdots \vee z_{n}\right) .
$$

Hence $x \prec a \vee\left(z_{1} \vee \cdots \vee z_{n}\right)$ and by Theorem 3.2 (6), $z_{1} \vee \cdots \vee z_{n} \prec \prec_{c} b$. Thus $z_{1} \vee \cdots \vee z_{n}$ is the desired c.
Corollary 4.3. Let L be a compact c-regular frame. Then, the following statements are true.
(1) If $x \prec b$ in L, then there exists an element c in L such that $x \prec c \prec_{c} b$.
(2) If $x \prec b$ in L, then there exists an element s in $B L$ such that $x \prec_{c} s \prec_{c} b$.
(3) The relations of $\prec, \prec \prec, \prec_{c}$ and \prec_{c} are equal.

Proof . (1). Take $a=0$ and apply the above lemma.
(2). By (1), there exists an element c in L such that $x \prec c \prec_{c} b$. Hence, there exists an element t in $\operatorname{Coz}_{c} L$ such that $c \wedge t=0$ and $t \vee b=1$. Hence, there exists $\left\{t_{n}\right\}_{n \in \mathbb{N}} \subseteq B L$ such that $t=\bigvee_{n \in \mathbb{N}} t_{n}$, which implies that there exists an element n in \mathbb{N} such that $c \wedge t_{n}=c \wedge t=0$ and $t_{n} \vee b=t \vee b=1$. Then $x \prec c \leq t_{n}^{*} \prec_{c} t_{n}^{*} \leq b$, which implies that $x \prec_{c} t_{n}^{*} \prec_{c} b$.
(3). It is obvious by (1) and (2).

5 c-completely regular frames

Let X be a topological space. Then in the frame $\mathfrak{O}(X)$ we have $U \prec_{c} V$ if and only if there exists a continuous $\operatorname{map} f: X \rightarrow[0,1]$ with countable image such that $f(U)=0, f(X-V)=1$. So, if we assume that for every $V \in \mathfrak{O}(X)$ we have $V=\bigvee_{U \not{ }_{c} V} U$ then X will be a c-completely regular space; since for every closed subset F and $x \notin F$, by applying the above assumption for $V=X-F$, we obtain $U \in \mathfrak{O}(X)$ with $x \in U \prec_{c} V$, and hence we get a continuous map $f: X \rightarrow[0,1]$ with countable image such that $f(x)=0$ and $f(F)=1$. Therefore, a Hausdorff space X is c-completely regular if and only if for any open set V of $X, V=\bigvee_{U \nprec_{c} V} U$. In addition, recall that a frame L is called completely regular if for every $a \in L$ we have $a=\bigvee_{x \prec a} x$. These motivate the following definition.

Definition 5.1. A frame L is called c-completely regular if for every $a \in L$ we have

$$
a=\bigvee_{x \nprec{ }_{c} a} x
$$

It is clear that a topological space X is c-completely regular if and only if $\mathfrak{O}(X)$ is a c-completely regular frame. Also, any c-completely regular frame is completely regular since $a \nprec_{c} b$ implies $a \prec \prec b$.

Recall that a frame L is called zero-dimensional if each of its elements is a join complemented elements. In [15], the authors show that the set $\mathrm{Coz}_{c} L$ is a base for a frame L if and only if L is a zero-dimensional frame. Now, since $a \in B L$ implies $a \nprec_{c} a$, and $a \nprec_{c} b$ implies $a \nprec_{c} s \prec_{c} b$ with $s \in \mathrm{Coz}_{c} L$, the following theorem is immediate.

Theorem 5.2. The following are equivalent for any frame L.
(1) L is a c-completely regular frame.
(2) $\mathrm{Coz}_{c} L$ is a base for L.
(3) L is a zero-dimensional frame.

Recall from [4] that a strong inclusion on a frame L is a binary relation \triangleleft on L such that
(1) If $x \leq a \triangleleft b \leq y$ then $x \triangleleft y$.
(2) \triangleleft is a sublattice of $L \times L$; that is $, 0 \triangleleft 0,1 \triangleleft 1$ and if $x \triangleleft a, y \triangleleft b$ then $x \vee y \triangleleft a \vee b, x \wedge y \triangleleft a \wedge b$.
(3) If $a \triangleleft b$ then $a \prec b$.
(4) If $a \triangleleft b$ then there exists c with $a \triangleleft c \triangleleft b$ (say \triangleleft interpolates).
(5) If $a \triangleleft b$ then $b^{*} \triangleleft a^{*}$.
(6) For each $a \in L, a=\bigvee_{x \triangleleft a} x$.

Remark 5.3. By Theorem 3.6 and Corollary 3.11, we get that \prec_{c} is a strong inclusion on a c-completely regular frame.

Definition 5.4. An ideal I of a frame L is said to be c-completely regular if $a \in I$ implies $a \nprec_{c} b$ for some $b \in I$.

We denote the set of all c-completely regular ideals of L by $\mathrm{c}-\operatorname{CRegId}(L)$. Then $\mathrm{c}-\operatorname{CRegId}(L) \subseteq \beta L$, the Stone-Čech compactification of L.

Lemma 5.5. For any frame L, the assignment $a \mapsto\left\{x \in L: x \nprec{ }_{c} a\right\}$ defines a map $r_{c}: L \rightarrow \mathrm{c}-\operatorname{CRegId}(L)$ such that
(1) $x \prec_{c} a$ if and only if $r_{c}(x) \prec r_{c}(a)$ in $\mathrm{c}-\operatorname{CRegId}(L)$.
(2) For each $a, r_{c}(a)=\bigvee_{x \nless c a} r_{c}(x)$.
(3) For each $a, r_{c}(a)=\bigvee\left\{I \in \mathrm{c}-\operatorname{CRegId}(L): I \prec r_{c}(a)\right\}$.
(4) r_{c} is a right adjoint to V.
(5) For any $a \in L$, we have $r_{c}\left(a^{*}\right)=\left(r_{c}(a)\right)^{*}$.
(6) For any $a, b \in \mathrm{Coz}_{c} L$, we have $r_{c}(a \vee b)=r_{c}(a) \vee r_{c}(b)$.

Proof. First, by conditions (1), (2), (4) of $\nless c$, we get that for each $a, r_{c}(a) \in \mathrm{c}-\operatorname{CRegId}(L)$. Hence, r_{c} is a map. Further
(1) Let $x \prec_{c} a$ be given. Then, by Theorem 3.6. there are $u, v \in \mathrm{Coz}_{c} L$ such that $x \prec_{c} u \nprec_{c} v \prec_{c} a$. So

$$
v \in r_{c}(a) \text { and } x \nprec{ }_{c} a \text { and } u \prec v \Rightarrow 1=u^{*} \vee v \in r_{c}\left(x^{*}\right) \vee r_{c}(a)
$$

On the other hand, we get that $r_{c}(x) \cap r_{c}\left(x^{*}\right)=\{0\}$. Hence, $r_{c}(x) \prec r_{c}(a)$.
Conversely, let $r_{c}(x) \prec r_{c}(a)$ in $\mathrm{c}-\operatorname{CRegId}(L)$. Then there exists a c-completely regular ideal J such that $r_{c}(x) \wedge J=\{0\}$ and $r_{c}(a) \vee J=L$. So, $\bigvee\left(r_{c}(x) \wedge J\right)=0$, that is, $x \wedge \bigvee J=0$, and $z \vee t=1$ for some $z \in r_{c}(a), t \in J$. Thus $x \wedge t=0$ and so $x=x \wedge 1=x \wedge(z \vee t)=(x \wedge z) \vee(x \wedge t)=x \wedge z$. Hence $x \leq z$ and $z \nprec \alpha_{c} a$. So, $x \nprec{ }_{c} a$.
(2) Let $a \in L$. Then for $x \nprec_{c} a$, by (1), $r_{c}(x) \prec r_{c}(a)$. Hence, $r_{c}(x) \subseteq r_{c}(a)$. So $\underset{x \nprec_{c} a}{\bigvee_{c}(x) \subseteq r_{c}(a) \text {. On the other }}$ hand, for each $x \in r_{c}(a)$ we have $x \prec_{c} a$, and so, by the property (4) of \prec_{c}, there exists y with $x \nprec_{c} y \prec_{c} a$. So, $x \in r_{c}(y) \subseteq \underset{x \nless{ }_{c} a}{ } r_{c}(x)$. Thus, $r_{c}(a) \subseteq \bigvee_{x \nless c a} r_{c}(x)$. Hence, $r_{c}(a)=\underset{x \nless c_{c} a}{ } r_{c}(x)$.
(3) Let $a \in L$. By (2), $r_{c}(a)=\bigvee_{x \prec_{c} a} r_{c}(x)$. But, by (1), if $x \prec_{c} a$ then $r_{c}(x) \prec r_{c}(a)$. So,

$$
r_{c}(a)=\bigvee_{x \nprec c a} r_{c}(x) \subseteq \bigvee_{r_{c}(x) \prec r_{c}(a)} r_{c}(x) \subseteq \bigvee\left\{I \in \mathrm{c}-\operatorname{CRegId}(L): I \prec r_{c}(a)\right\}
$$

But, $\underset{I \prec r_{c}(a)}{ } I \subseteq r_{c}(a)$ is true since $I \prec r_{c}(a)$ implies $I \subseteq r_{c}(a)$. Thus, $r_{c}(a)=\bigvee\left\{I \in \mathrm{c}-\operatorname{CRegId}(L): I \prec r_{c}(a)\right\}$.
(4) r_{c} is a right adjoint to \bigvee, since for every c-completely regular ideal J and $a \in L$, we have

$$
\bigvee J \leq a \Leftrightarrow J \subseteq r_{c}(a)
$$

because if $\bigvee J \leq a$ and $x \in J$ then $x \prec_{c} z$ for some $z \in J$ and hence $x \nprec_{c} \bigvee J$, which implies $x \nprec_{c} a$, and if $J \subseteq r_{c}(a)$ then $\bigvee J \leq \bigvee r_{c}(a) \leq a$.
(5) Since r_{c} preserves zero and arbitrary meets, we would have

$$
r_{c}(a) \wedge r_{c}\left(a^{*}\right)=r_{c}\left(a \wedge a^{*}\right)=r_{c}(0)=\{0\}
$$

showing that $r_{c}\left(a^{*}\right) \leq\left(r_{c}(a)\right)^{*}$. This establishes the inclusion \subseteq. Next, since

$$
0=\bigvee\{0\}=\bigvee\left(r_{c}(a) \wedge\left(r_{c}(a)\right)^{*}\right)=\bigvee r_{c}(a) \wedge \bigvee\left(r_{c}(a)\right)^{*}=a \wedge \bigvee\left(r_{c}(a)\right)^{*}
$$

we have $\bigvee\left(r_{c}(a)\right)^{*} \leq a^{*}$. Thus, by (4), $\left(r_{c}(a)\right)^{*} \leq r_{c}\left(a^{*}\right)$, proving the other inclusion.
(6) First note that $x \prec_{c} a \vee b$ implies that $x \prec_{c} u \vee b$ for some $u \in \mathrm{Coz}_{c} L$ such that $u \prec_{c} a$. For this, let $t \in \mathrm{Coz}_{c} L$ such that $x \wedge t=0$ and $t \vee a \vee b=1$. Since $\mathrm{Coz}_{c} L$ is normal, take $u, v \in \mathrm{Coz}_{c} L$ such that $a \vee v=1=t \vee u \vee b$ and $u \wedge v=0$ to obtain $x \prec_{c} u \vee b, u \in \mathrm{Coz}_{c} L$, and $u \prec_{c} a$. It follows now that $x \prec_{c} a \vee b$ implies $x \leq u \vee v$ for suitable $u, v \in \mathrm{Coz}_{c} L$ such that $u \prec_{c} a$ and $v \prec_{c} b$, showing that $r_{c}(a \vee b) \subseteq r_{c}(a) \vee r_{c}(b)$ since $\prec_{c}=\prec_{c}$ in $\operatorname{Coz}_{c} L$. The revers inclusion is immediate, and so $r_{c}(a \vee b)=r_{c}(a) \vee r_{c}(b)$.

Lemma 5.6. For any frame L, the following statements are true.
(1) c - CRegId (L) is a compact regular frame.
(2) If L is c-completely regular, then $\bigvee: c-\operatorname{CRegId}(L) \rightarrow L$ is a compactification for L.

Proof . (1). First we show that c $-\operatorname{CRegId}(L)$ is a subframe of $\operatorname{Id}(L)$. Since $0 \prec_{c} 0$ and $1 \prec_{c} 1$, we get that $\{0\}$ and L are c-completely regular. Now, let $I, J \in \mathrm{c}-\operatorname{CRegId}(L)$. Then, for $x \in I \cap J$ there exist $y \in I$ and $z \in J$ such that $x \prec_{c} y$ and $x \prec_{c} z$. Hence $x \prec_{c} y \wedge z$ (since \prec_{c} is a sublattice of $L \times L$), where $y \wedge z \in I \cap J$. Thus, $I \cap J \in \mathrm{c}-\operatorname{CRegId}(L)$. Also, for $x=y \vee z \in I \vee J$ with $y \in I, z \in J$ there exist $s \in I$ and $t \in J$ such that $y \prec_{c} s$ and $z \prec_{c} t$. Thus $x=y \vee z \prec_{c} s \vee t$, where $s \vee t \in I \vee J$. Hence $I \vee J \in \mathrm{c}-\operatorname{CRegId}(L)$. Finally, if $D \subseteq \mathrm{c}-\operatorname{CRegId}(L)$ is directed then $\bigvee D=\bigcup D \in \mathrm{c}-\operatorname{CReg} \operatorname{Id}(L)$. Therefore, $\mathrm{c}-\operatorname{CReg} \operatorname{Id}(L)$ is a subframe of $\operatorname{Id}(L)$.

Now, since $\operatorname{Id}(L)$ is a compact frame, we conclude that c $-\operatorname{CRegId}(L)$ is compact. Also, for every $J \in \mathrm{c}-\operatorname{CReg} \operatorname{Id}(L)$, we clearly have $J=\underset{r_{c}(a) \subseteq J}{\bigvee} r_{c}(a)$. So, using part (3) of 5.5 , for each $J \in \mathrm{c}-\operatorname{CRegId}(L)$, we have

$$
\begin{aligned}
J=\bigvee_{r_{c}(a) \subseteq J} r_{c}(a) & =\bigvee_{r_{c}(a) \subseteq J}\left(\bigvee\left\{I \in \mathrm{c}-\operatorname{CReg} \operatorname{Id}(L): I \prec r_{c}(a)\right\}\right) \\
& =\bigvee\{I \in \mathrm{c}-\operatorname{CReg} \operatorname{Id}(L): I \prec J\}
\end{aligned}
$$

Thus $\mathrm{c}-\operatorname{CRegId}(L)$ is a regular frame.
(2) Since for each $a \in L, a=\bigvee r_{c}(a)$, we conclude that $\bigvee: c-\operatorname{CReg} \operatorname{Id}(L) \rightarrow L$ is onto, and hence it is a compactification for L.

We note that for any a and x in a frame L, if $r_{c}(x) \nprec \prec_{c} r_{c}(a)$ in $\mathrm{c}-\operatorname{CReg} \operatorname{Id}(L)$, then part (1) of Lemma 5.5 implies that $x \nprec \prec_{c} a$. For the converse, we give the next lemma.

Lemma 5.7. For any frame L, if $\mathrm{c}-\mathrm{CReg} \operatorname{Id}(L)$ is a c-completely regular frame, then for any a and x in a frame L, $x \nprec \prec_{c} a$ implies that $r_{c}(x) \nprec \prec_{c} r_{c}(a)$ in $c-\operatorname{CRegId}(L)$.

Proof . Let $x \nprec_{c} a$ be given. Then, by part (1) of Lemma 5.5, $r_{c}(x) \prec r_{c}(a)$ in $\mathrm{c}-\operatorname{CRegId}(L)$. Since c $-\operatorname{CRegId}(L)$ is a compact c-completely regular frame, we conclude from Corollary 4.3 that $r_{c}(x) \nprec \prec_{c} r_{c}(a)$ in $\mathrm{c}-\operatorname{CRegId}(L)$

Theorem 5.8. For any frame $L, \mathrm{c}-\operatorname{CReg} \operatorname{Id}(L)$ is a c-completely regular frame if and only if $t \prec_{c} a$ implies that $r_{c}(t) \prec_{c} r_{c}(a)$ in $\mathrm{c}-\mathrm{CReg} \operatorname{Id}(L)$ for any a in a frame L and $t \in \mathrm{Coz}_{c} L$.

Proof. The 'if' part is true by the forgoing lemma. To prove the 'only if' part, let $I \in \mathrm{c}-\operatorname{CRegId}(L)$ and $x \in I$. Then there is an element y in I such that $x \nprec_{c} y$, and hence, by Corollary 3.7, $x \nprec_{c} t \prec_{c} y$ for some $t \in \mathrm{Coz}_{c} L$. Hence $x \in r_{c}(t)$ and by the present hypothesis,$r_{c}(t) \prec_{c} r_{c}(y)$. But $y \in I$ and hence $r_{c}(y) \subseteq I$. Thus $r_{c}(t) \nprec{ }_{c} r_{c}(y) \subseteq I$ which implies $r_{c}(t) \prec_{c} I$. Therefore, $I=\bigvee_{J \prec_{c} I} J$ as required.

Let L be a c-completely regular frame. We write $\beta_{c} L$ for the compactification $\mathrm{c}-\operatorname{CRegId}(L)$. It is known that the coreflection map $\bigvee: I d(B L) \rightarrow L$ is a compactification for a frame L if and only if L is zero-dimensional. We denote this compactification by $\beta_{0} L$. Now, by [4] Page 110], we can infer that $\beta_{c} L \cong \beta_{0} L$.

We now move to open and closed quotients. That is, we aim to show that if L is a c-completely regular frame and $a \in L$, then $\downarrow a$ and $\uparrow a$ are c-completely regular frames. We begin with the following lemma.

Lemma 5.9. Let $f: L \rightarrow M$ be any frame map. Then
(1) f preserves \prec_{c}.
(2) f preserves $\nprec{ }_{c}$.
(3) If I is a c-completely regular ideal of L, then $<f(I)>$ is a c-completely regular ideal of M.
(4) If L is c-completely regular, then $f(L)$ is c-completely regular.

Proof . (1). Let $a, b \in L$ with $a \prec_{c} b$ be given. Then there exists $x \in \operatorname{Coz}_{c} L$ such that $a \wedge x=0$ and $x \vee b=1$. Then there exists a family $\left\{x_{n}\right\}_{n \in \mathbb{N}} \subseteq B L$ such that $x=\bigvee_{n=1}^{\infty} x_{n}$. Since $\left\{f\left(x_{n}\right)\right\}_{n \in \mathbb{N}} \subseteq B L, f(x)=\bigvee_{n=1}^{\infty} f\left(x_{n}\right) \in \operatorname{Coz}_{c}(L)$, $f(a) \wedge f(x)=0$ and $f(x) \vee f(b)=1$, we conclude that $f(a) \prec_{c} f(b)$.
(2). Let $a, b \in L$ with $a \prec_{c} b$ be given. Then there exists a c-scale $\left\{x_{q}: q \in[0,1] \cap \mathbb{Q}\right\}$ between a and b. By part (1), $\left\{f\left(x_{q}\right): q \in[0,1] \cap \mathbb{Q}\right\}$ is a c-scale between $f(a)$ and $f(b)$. Hence, $f(a) \prec_{c} f(b)$.
(3). Let I be a c-completely regular ideal of L and $x \in<f(I)>$. Then there exists $a \in I$ with $x \leq f(a)$. Since $a \in I$, there exists $z \in I$ with $a \prec_{c} z$. Now, using (2), $x \leq f(a) \prec_{c} f(z)$. Hence $x \prec_{c} f(z)$, where $f(z) \in<f(I)>$, which shows that $<f(I)>$ is a c-completely regular ideal.
(4). By part (2), it is evident.

The above lemma allow us to obtain the following theorem.
Theorem 5.10. Let L be a c-completely regular frame and $a \in L$. Then $\downarrow a$ and $\uparrow a$ are c-completely regular frames.

We close this section by the following proposition.

Proposition 5.11. If L is compact c-completely regular, then $J=r_{c}(\bigvee J)$ for every $J \in \mathrm{c}-\operatorname{CRegId}(L)$.
Proof . For $x \in J$, there exists $z \in J$ such that $x \nprec_{c} z \leq \bigvee J$, which implies that $x \in r_{c}(\bigvee J)$. Hence, $J \subseteq r_{c}(\bigvee J)$. Let $x \in r_{c}(\bigvee J)$ be given. Then

$$
\begin{aligned}
x \prec_{c} \bigvee J & \Rightarrow x \prec_{c} \bigvee J \\
& \Rightarrow 1=x^{*} \vee \bigvee J=\bigvee_{z \in J} x^{*} \vee z \\
& \Rightarrow \exists z \in J\left(1=x^{*} \vee z\right) \\
& \Rightarrow \exists z \in J(x \prec z) \\
& \Rightarrow \exists z \in J(x \leq z) \\
& \Rightarrow x \in J .
\end{aligned}
$$

Consequently, $J=r_{c}(\bigvee J)$.
Acknowledgements: Thanks are due to the referee for helpful comments that have improved the readability of this paper.

References

[1] M. Abedi, On CP-frames and the Artin-Rees property, J. Algebra Relat. Top. (2023). doi

[2] R.N. Ball, J. Walters-Wayland, C - and C^{*}-quotients in pointfree topology, Diss. Math. 412 (2002), 62. | Zbl | MR | doi |
| :--- | :--- | :--- |

[3] B. Banaschewski, The Real Numbers in Pointfree Topology, Textos Mat., Sér. B, Universidade de Coimbra, Coimbra, 1997. Zbl MR Link
[4] B. Banaschewski, Compactification of frames, Math. Nachr. 149 (1990), 105-115. Zbl MR ||c|
[5] B. Banaschewski, C. Gilmour, Stone-Čech compactification and dimension theory for regular σ-frame, J. London Math. Soc. 39 (1989), 1-8. zbl MR doi
[6] M. Elyasi, A.A. Estaji, M. Robat Sarpoushi, Locally functionally countable subalgebra of $\mathcal{R} L$, Arch. Math. (Brno) 56 (2020), 127-140. Zbl MR doi
[7] A.A. Estaji, A. Karimi Feizabadi, M. Robat Sarpoushi, z_{c}-ideals and prime ideals in the ring $\mathcal{R}_{c} L$, Filomat 32 (2018), 6741-6752. zbl MR doi
[8] A.A. Estaji, M. Robat Sarpoushi, On CP-frames, J. Algebra Relat. Top. 9 (2021), 109-119. Zbl $\mathbf{M R}$ doi
[9] A.A. Estaji, M. Robat Sarpoushi, M. Elyasi, Further thoughts on the ring $\mathcal{R}_{c}(L)$ in frames, Algebra Univers. 80 (2019), 14. Zbl MR doi
[10] A.A. Estaji, M. Taha, Cozero part of the pointfree version of $\mathcal{C}_{c}(L)$, (Submitted).
[11] A.A. Estaji, M. Taha, The clean elements of the $\operatorname{ring} \mathcal{R} L$, Czechoslovak Math. J. (2023). doi
[12] M. Ghadermazi, O.A.S. Karamzadeh, M. Namdari, On the functionally countable subalgebra of $C(X)$, Rend. Sem. Mat. Univ. Padova 129 (2013), 47-69. Zbl |MR ||ci

[13] J. Picado, A. Pultr, Frames and Locales: Topology without Points, Front. Math., Springer Basel, 2012. | Zbl | MR |
| :--- | :--- |

[14] P.T. Johnstone, Stone Spaces, Camb. Stud. Adv. Math., Cambridge University Press, Cambridge, 1982. ZDI MR
[15] M. Taha, A.A. Estaji, M. Robat Sarpoushi, The pointfree version of $C_{c}(X)$ via the rings of functions, (Accepted in Math. Slovaca).

[^0]: * Corresponding author

 Email addresses: ms_abedi@yahoo.com, abedi@esfarayen.ac.ir (Mostafa Abedi), aaestaji@hsu.ac.ir (Ali Akbar Estaji)

