Journal of Frame and Matrix Theory (JFMT) 1 (2023) No. 1, 42–47 Published by Faculty of Mathematics and Computer Science Hakim Sabzevari University http://dx.doi.org/10.22034/JFMT.2023.418086.1007

2-Local higher derivations

Tayebeh Lal Shateria

^a Faculty of Mathematics and Computer Science, Hakim Sabzevari University, Sabzevar, Iran

(Communicated by Ali Akbar Arefijamaal)

Abstract

The paper is devoted to 2-local higher derivations on some algebras. It is shown that continuous 2-local higher derivations on $\mathfrak{B}(\mathcal{H})$, for an infinite dimensional separable Hilbert space \mathcal{H} are higher derivations and each 2-local inner higher derivation on $\mathfrak{F}(\mathcal{H})$ (the ideal of all finite-dimensional operators from $\mathfrak{B}(\mathcal{H})$) is a higher derivation. Also we prove that every 2-local higher derivation from a commutative *-subalgebra of the matrix algebra M_n over \mathbb{C} is a higher derivation.

Keywords: Higher derivation, 2-local higher derivation, Hilbert space, Matrix algebra.

MSC 2000: Primary: 46H40; Secondary: 46H40.

1 introduction

Let \mathcal{A} and \mathcal{B} be algebras. A higher derivation of rank k (k might be ∞) is a family of linear mappings $\{d_m\}_{m=0}^k$ from \mathcal{A} into \mathcal{B} such that

$$d_m(ab) = \sum_{j=0}^m d_j(a)d_{m-j}(b), \quad (a, b \in \mathcal{A}, \quad m = 0, 1, 2, ...).$$
(1.1)

It is obvious that for a higher derivation $\{d_m\}_{m=0}^k$, d_0 is a homomorphism. Higher derivations were introduced by Hasse and Schmidt [5], and algebraists sometimes call them Hasse-Schmidt derivations. They are also studied in other contexts. In [17] higher derivations are applied to study generic solving of higher differential equations. The reader may find more about higher derivations in [2, 4, 6, 7, 9, 12, 13, 15, 16].

A higher derivation $\{d_m\}_{m=0}^k$ is said to be continuous if each d_m is continuous. If $\mathcal{B} = \mathcal{A}$ and $d_0 = id_{\mathcal{A}}$, where $id_{\mathcal{A}}$ is the identity map on \mathcal{A} , then d_1 is a derivation and $\{d_m\}_{m=0}^k$ is called a strongly higher derivation. A standard example of a higher derivation of rank k is $\{\frac{D^m}{m!}\}_{m=0}^k$ where $D: \mathcal{A} \to \mathcal{A}$ is a derivation. A strong higher derivation $\{d_m\}_{m=0}^k$ on \mathcal{A} is called inner if there are $u_0, u_1, \cdots, u_k \in \mathcal{A}$ such that $d_m(a) = au_m - \sum_{i=1}^m u_{m-i}d_i(a)$, for all $a \in \mathcal{A}$ and $1 \leq m \leq k$. A family $\{d_m\}_{m=0}^k$ of linear mappings from an algebra \mathcal{A} into an algebra \mathcal{B} is called 2-local higher derivation (res. 2-local inner higher derivation) if for all $a, b \in \mathcal{A}$ there exists a higher derivation (res. an inner higher derivation) $\{D_m^{a,b}\}_{m=0}^k$ from \mathcal{A} into \mathcal{B} such that $d_m(a) = D_m^{a,b}(a)$ and $d_m(b) = D_m^{a,b}(b)$. In the context of derivations, the relation between 2-local derivations and derivations is studied by Several authors. Semrl in [14], shows that every 2-local derivation on $\mathfrak{B}(\mathcal{H})$, for an infinite dimensional separable Hilbert space \mathcal{H} is derivation. Also

Email address: t.shateri@hsu.ac.ir (Tayebeh Lal Shateri)

Received: 26 September 2023 Accepted: 10 November 2023

Og Kim and Seon Kim in [10, 11] proved that 2-local derivations on M_n and AF C^* -algebras are derivations. Ayupov and Kudaybergenov in [1] proved that every 2-local derivation on $\mathfrak{B}(\mathcal{H})$, for a Hilbert space \mathcal{H} , is a derivation.

In the present paper, we generalize some results of [14, 1, 10, 11] for 2-local higher derivations. We prove that continuous 2-local higher derivations on $\mathfrak{B}(\mathcal{H})$, for an infinite dimensional separable Hilbert space \mathcal{H} and 2-local inner higher derivations on $\mathfrak{F}(\mathcal{H})$ is a higher derivation. Furthermore we show that every 2-local higher derivation from a commutative *-subalgebra of the matrix algebra M_n over \mathbb{C} is a higher derivation.

2 2-local higher derivations

Before stating our results we fix some notation. Let \mathcal{H} be a separable Hilbert space and let $\mathfrak{B}(\mathcal{H})$ be the algebra of all linear bounded operators on \mathcal{H} . We denote by $\mathfrak{F}(\mathcal{H})$, the ideal of all finite-dimensional operators from $\mathfrak{B}(\mathcal{H})$ and by tr the canonical trace on $\mathfrak{B}(\mathcal{H})$. For each $x, y \in \mathcal{H}$, xy^* denotes the rank one operator given by $(x \otimes y)z = \langle z, y \rangle$ $x \in \mathcal{H}$. Also $id_{\mathcal{H}}$ denotes the identity operator on \mathcal{H} .

Theorem 2.1. Let \mathcal{H} be an infinite dimensional separable Hilbert space and let $\{d_m\}_{m=0}^k$ be a 2-local strong higher derivation on $\mathfrak{B}(\mathcal{H})$ such that $d_m(id_{\mathcal{H}})$ commutes with $id_{\mathcal{H}}$ for all $1 \leq m \leq k$. Then $\{d_m\}_{m=0}^k$ is a higher derivation.

Proof. By employing the similar way of the proof of [14, Theorem 2], let $\{e_n\}$ be an orthonormal basis of \mathcal{H} . We define the operators α, β in $\mathfrak{B}(\mathcal{H})$ as follows

$$\alpha = \sum_{n=1}^{\infty} \frac{1}{2^n} e_n e_n^*$$
, $\beta e_1 = 0$ and $\beta e_n = e_{n-1}$, $(n \ge 2)$.

Now, since $\{d_m\}_{m=0}^k$ is a 2-local strong higher derivation on $\mathfrak{B}(\mathcal{H})$, hence there is a higher derivation $\{D_m^{\alpha,\beta}\}$ such that $d_m(\alpha) = D_m^{\alpha,\beta}(\alpha)$ and $d_m(\beta) = D_m^{\alpha,\beta}(\beta)$. By replacing d_m with $d_m - D_m^{\alpha,\beta}$ we can assume that $d_m(\alpha) = d_m(\beta) = 0$. Hence it is enough to prove that $d_m(T) = 0$, for all $T \in \mathfrak{B}(\mathcal{H})$ and for all $1 \leq m \leq k$. If k = 1, the proof of [14, Theorem 2] shows that $d_1(T) = 0$, for all $T \in \mathfrak{B}(\mathcal{H})$. Now, assume that $d_m(T) = 0$, for all $T \in \mathfrak{B}(\mathcal{H})$ and for all $1 \leq m \leq k - 1$, we show that $d_k(T) = 0$. Suppose $S, T \in \mathfrak{B}(\mathcal{H})$, since $\{d_m\}_{m=0}^k$ is a 2-local strong higher derivation, so there is a higher derivation $\{D_m^{S,T}\}_{m=0}^k$ such that $d_m(S) = D_m^{S,T}(S)$ and $d_m(T) = D_m^{S,T}(T)$ for all $1 \leq m \leq k - 1$. On the other hand each 2-local higher derivation is a local higher derivation, hence there exists a higher derivation $\{D_m^{ST}\}_{m=0}^k$ on $\mathfrak{B}(\mathcal{H})$ such that $d_m(ST) = D_m^{S,T}(ST)$ for all $1 \leq m \leq k - 1$. We have

$$\begin{split} D_k^{S,T}(ST) &= SD_k^{S,T}(T) + \sum_{m=1}^{k-1} D_m^{S,T}(S) D_{k-m}^{S,T}(T) + D_k^{S,T}(S) T \\ &= Sd_k(T) + \sum_{m=1}^{k-1} d_m(S) d_{k-m}(T) + d_k(S) T = Sd_k(T) + d_k(S) T. \end{split}$$

Therefore $D_k^{ST}(ST) - D_k^{S,T}(ST) = d_k(ST) - Sd_k(T) + d_k(S)T$. Now by replacing S with $id_{\mathcal{H}}$, we get

$$D_k^{id_{\mathcal{H}}T}(T) - D_k^{id_{\mathcal{H}},T}(T) = d_k(T) - d_k(T) + d_k(id_{\mathcal{H}})T.$$

With the help of [1, Lemma 2.2, Theorem 2.3], the following result can be derived for a 2-local strongly higher derivation.

Lemma 2.2. Let $\{d_m\}_{m=0}^k$ be a 2-local strongly higher derivation on $\mathfrak{B}(\mathcal{H})$ such that $d_m|_{\mathfrak{F}(\mathcal{H})}=0$, for all $1 \leq m \leq k$. Then $d_m=0$, for all $1 \leq m \leq k$.

Proof. For each $S,T\in\mathfrak{B}(\mathcal{H})$ there exists a strongly higher derivation $\{D_m^{S,T}\}_{m=0}^k$ such that $d_m(S)=D_m^{S,T}(S)$ and $d_m(T)=D_m^{S,T}(T)$ for all $1\leq m\leq k$. By [1, Theorem 2.3], d_1 is a derivation. But by [1, Lemma 2.2] we know that $d_1=0$ so $D_1^{x,y}(x)=D_1^{x,y}(y)=0$. Hence d_2 is a 2-local derivation and [1, Lemma 2.2] implies that $d_2=0$. Continuing this process we conclude that $d_m=0$, for $1\leq m\leq k$. \square

In the following theorem, we consider 2-local strongly inner higher derivations on $\mathfrak{B}(\mathcal{H})$, for a separable Hilbert space \mathcal{H} .

44 T. L. Shateri

Theorem 2.3. Let \mathcal{H} be a separable Hilbert space and let $\{d_m\}_{m=0}^k$ be a 2-local strongly inner higher derivation on $\mathfrak{B}(\mathcal{H})$. Then the restriction of $\{d_m\}_{m=0}^k$ on $\mathfrak{F}(\mathcal{H})$ is a higher derivation.

Proof. Let $S, T \in \mathfrak{B}(\mathcal{H})$, then there exists a strongly inner higher derivation $\{D_m^{S,T}\}_{m=0}^k$ such that $d_m(S) = D_m^{S,T}(S)$ and $d_m(T) = D_m^{S,T}(T)$ for all $1 \le m \le k$. Since $\{D_m^{S,T}\}_{m=0}^k$ is inner there exist $u_0 = 1, u_1, \ldots, u_m$ in $\mathfrak{B}(\mathcal{H})$ such that

$$D_m^{S,T}(ST) = STu_m - u_m ST - \sum_{i=1}^{m-1} u_{m-i} D_i^{S,T}(ST).$$

But

$$D_m^{S,T}(ST) = \sum_{i=1}^m D_{m-i}^{S,T}(S) D_i^{S,T}(T) = \sum_{i=1}^m d_{m-i}(S) d_i(T).$$

Hence

$$STu_m - u_m ST - \sum_{i=1}^{m-1} u_{m-i} D_i^{S,T}(ST) = \sum_{i=1}^m d_{m-i}(S) d_i(T).$$

[1, Theorem 2.3] implies that d_1 is a derivation. Now let $S, T \in \mathfrak{F}(\mathcal{H})$, since the trace tr accepts finite values on $\mathfrak{F}(\mathcal{H})$ and $\mathfrak{F}(\mathcal{H})$ is an ideal in $\mathfrak{B}(\mathcal{H})$ we have

$$tr(d_1(ST)) = tr((d_1S)T) = tr(T(d_1S)) = tr((Td_1)S) = tr(S(Td_1)) = tr((ST)d_1),$$

hence $tr(d_1(ST)) = 0$. Similarly it is deduced that

$$tr(\sum_{i=0}^{m} d_{m-i}(S)d_i(T)) = tr(D_m^{S,T}(ST)) = 0,$$

for $1 \leq m \leq k$. Hence

$$tr(Sd_m(T)) = -tr(d_m(S)T) - tr(\sum_{i=1}^{m-1} d_{m-i}(S)d_i(T)).$$
(2.1)

Now for $V, W, Z \in \mathfrak{F}(\mathcal{H})$, set X = V + W, T = Z, then we have

$$tr((V+W)d_m(Z)) = -tr(d_m(V+W)Z) - \sum_{i=1}^{m-1} tr(d_{m-i}(V+W)d_i(Z))$$
$$= -tr(d_m(V+W)Z) - \sum_{i=1}^{m-1} [tr(d_{m-i}(V)d_i(Z)) + tr(d_{m-i}(W)d_i(Z))],$$

and so

$$tr(Vd_m(Z)) + tr(Wd_m(Z)) = -tr(d_m(V+W)Z) - \sum_{i=1}^{m-1} [tr(d_{m-i}(V)d_i(Z)) + tr(d_{m-i}(W)d_i(Z))].$$

By (2.1) we obtain

$$tr(Vd_m(Z)) + tr(Wd_m(Z)) = -tr(d_m(V)Z) - \sum_{i=1}^{m-1} [tr(d_{m-i}(V)d_i(Z)) - tr(d_m(W)Z) - \sum_{i=1}^{m-1} [tr(d_{m-i}(W)d_i(Z))]$$

$$= -tr(d_m(V+W)Z) - \sum_{i=1}^{m-1} [tr(d_{m-i}(V)d_i(Z)) + tr(d_{m-i}(W)d_i(Z))],$$

hence $tr([d_m(V+W)-d_m(V)-d_m(W)]Z)=0$ for all $V,W,Z\in\mathfrak{F}(\mathcal{H})$. Now if $a=d_m(V+W)-d_m(V)-d_m(W)$ and $Z=A^*$, then $tr(AA^*)=0$, since the trace tr is faithful, it follows that $AA^*=0$ and so A=0. Therefore

$$d_m(V+W) = d_m(V) + d_m(W),$$

that is d_m is an additive map on $\mathfrak{F}(\mathcal{H})$. Now let $S \in \mathfrak{B}(\mathcal{H})$ and $\lambda \in \mathbb{C}$, there exists an inner higher derivation $\{D_m^{S,\lambda S}\}_{m=0}^k$ such that $d_m(S) = D_m^{S,\lambda S}(S)$ and $d_m(\lambda S) = D_m^{S,\lambda S}(\lambda S)$ for $1 \leq m \leq k$, then for $1 \leq m \leq k$

$$d_m(\lambda S) = D_m^{S,\lambda S}(\lambda S) = \lambda D_m^{S,\lambda S}(S) = \lambda d_m(S).$$

Consequently d_m is a linear operator. Now, for each $S \in \mathfrak{B}(\mathcal{H})$ there exists an inner higher derivation $\{D_m^{S,S^2}\}_{m=0}^k$ such that $d_m(S) = D_m^{S,S^2}(S)$ and $d_m(S^2) = D_m^{S,S^2}(S^2)$ for $1 \le m \le k$. Then

$$d_m(S^2) = D_m^{S,S^2}(S^2) = \sum_{i=0}^m D_{m-i}^{S,S^2}(S) D_i^{S,S^2}(S) = \sum_{i=0}^m d_{m-i}(S) d_i(S).$$

Therefore, the restriction $\{d_m\}_{m=0}^k|_{\mathfrak{F}(\mathcal{H})}$ is a linear Jordan higher derivation on $\mathfrak{F}(\mathcal{H})$. Since $\mathfrak{F}(\mathcal{H})$ is semi-prime, [3, Theorem 1.2] implies that $\{d_m\}_{m=0}^k$ on $\mathfrak{F}(\mathcal{H})$ is a higher derivation on $\mathfrak{F}(\mathcal{H})$. This completes the proof. \square

Now we consider 2-local higher derivations on M_n . For this we need the following theorem which is proved in [8, Theorem 3.5].

Theorem 2.4. Let \mathfrak{M} be a W^* -algebra and $\{d_m\}_{m=0}^k$ a strongly higher derivation on \mathfrak{M} . Let \mathcal{A} be a commutative W^* -subalgebra of \mathfrak{M} . Then for each $m \in \mathbb{N}$ there are $u_0 = 1, u_1, \ldots, u_m$ in \mathfrak{M} such that $d_m(a) = au_m - \sum_{i=0}^{m-1} u_{m-i}d_i(a)$ for all $a \in \mathcal{A}$ and

$$||u_m|| \le ||d_m|| + ||u_{m-1}|| ||d_1|| + \ldots + ||u_1|| ||d_{m-1}||.$$

Theorem 2.5. Let M_n be an $n \times n$ matrix algebra over \mathbb{C} . Then every 2-local higher derivation from a commutative *-subalgebra of M_n into M_n is a higher derivation.

Proof. Let $\{d_m\}_{m=0}^k$ be a local higher derivation on a commutative *-subalgebra \mathcal{N} of M_n and let $\{e_1, e_2, \cdots, e_n\}$ be the standard basis for \mathbb{C}^n . We consider two matrices A and B in M_n as follows

$$A = \begin{pmatrix} \frac{1}{2} & 0 & \cdots & 0 \\ 0 & \frac{1}{2^2} & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & 0 & \frac{1}{2^n} \end{pmatrix}, \quad B = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 & 1 \\ 0 & 0 & \cdots & 0 & 0 \end{pmatrix}.$$

It is easy to see that $T \in M_n$ commutes with A if and only if it is diagonal, and $U \in M_n$ commutes with B if U is of the form

$$Ue_k = \sum_{i=1}^{k} \lambda_{k+1-i} e_i \quad (k = 1, 2, \dots, n)$$

for some $\{\lambda_1, \dots, \lambda_k | \lambda_k \in \mathbb{C}\}.$

By assumption there is a higher derivation $\{D_m^{A,B}\}$ on M_n such that $d_m(A) = D_m^{A,B}(A)$, $d_m(B) = D_m^{A,B}(B)$ $(m \in \mathbb{N})$. Replacing d_m by $d_m - D_m^{A,B}$, if necessary, we can assume that $d_m(A) = d_m(B) = 0$. It is enough to show that for each $T \in M_n$, $d_m(T) = 0$. By [10, Theorem 3], it follows that $d_1(T) = 0$. Suppose that $d_i = 0$ $(1 \le i \le m - 1)$. Since $D_m^{A,B}$ is a higher derivation Theorem (2.4) implies that for any $T \in M_n$, there exist diagonal elements $\{V_m^{A,T}\}$ and $\{U_m^{B,T}\}$ of the above form, depending on T, such that

$$D_m^{A,T}(T) = TV_m^{A,T} - V_m^{A,T}T - \sum_{k=1}^{m-1} V_k^{A,T} D_{m-k}^{A,T}(T) = TV_m^{A,T} - V_m^{A,T}T,$$

$$D_m^{B,T}(T) = TU_m^{B,T} - U_m^{B,T}T - \sum_{k=1}^{m-1} U_k^{B,T} D_{m-k}^{B,T}(T) = TU_m^{B,T} - U_m^{B,T}T.$$

46 T. L. Shateri

But $D_m^{A,T}(T)=d_m(T)=D_m^{B,T}(T)$, hence $TV_m^{A,T}-V_m^{A,T}T=TU_m^{B,T}-U_m^{B,T}T$. Let $\{I_{ij}\}_{i,j=1,\cdots,n}$ be the system of matrix units of M_n . Then for any i and j we have

$$d_m(I_{ij}) = I_{ij}V_m^{A,I_{ij}} - V_m^{A,I_{ij}}I_{ij} = I_{ij}U_m^{B,I_{ij}} - U_m^{B,I_{ij}}I_{ij}$$

for some $V_m^{A,I_{ij}} = diag(\lambda_{1m}, \dots, \lambda_{nm})$ and $U_m^{B,I_{ij}}$ of the above form. Since

$$I_{ij}V_m^{A,I_{ij}} - V_m^{A,I_{ij}}I_{ij} = (\lambda_{jm} - \lambda_{im})I_{ij},$$

and (i,j)-entry of $I_{ij}U_m^{B,I_{ij}}-U_m^{B,I_{ij}}I_{ij}$ is zero, it follows that $d_m(I_{ij})=0$. But I_{ij} is the rank one operator $e_i\otimes e_j$, for any $T\in M_n$ we have

$$I_{ij}d_m(T)I_{ij} = D_m^{I_{ij},T}(I_{ij}TI_{ij}) = < Te_i, e_j > D_m^{I_{ij},T}(I_{ij}) = < Te_i, e_j > d_m(I_{ij}) = 0.$$

Consequently $\langle d_m(T)e_i, e_i \rangle (I_{ij}) = 0$ and hence $d_m(T) = 0$, completing the proof. \square

Employing the similar way as in [11, Prosition 3], we get the next corollary for a 2-local strongly higher derivation.

Corollary 2.6. Let $\mathcal{A} = M_1 \oplus M_2 \oplus \cdots \oplus M_n$, where M_i is a $k(i) \times k(i)$ matrix algebra for some $k(i) \in \mathbb{N}$. If $\{d_m\}_{m=0}^k$ is a 2-local strongly higher derivation from a commutative *-subalgebra \mathcal{B} of \mathcal{A} into \mathcal{A} , then $\{d_m\}_{m=0}^k$ is a higher derivation.

Proof. By [11, Prposition 3] it follows that d_1 is a derivation. Suppose that $A, B \in \mathcal{A}$, then there exists a higher derivation $\{D_m^{A,B}\}$ on \mathcal{A} such that $d_m(A) = D_m^{A,B}(A)$ and $d_m(B) = D_m^{A,B}(B)$. Theorem (2.4) implies that for every $A, B \in \mathcal{A}$ there exist $U_0 = 1, U_1^{A,B}, \ldots, U_m^{A,B}$ in \mathcal{A} such that

$$d_m(A) = AU_m^{A,B} - U_m^{A,B}A - \sum_{k=1}^{m-1} U_{m-k}^{A,B} D_k^{A,B}(A),$$

$$d_m(B) = BU_m^{A,B} - U_m^{A,B}B - \sum_{k=1}^{m-1} U_{m-k}^{A,B} D_k^{A,B}(B).$$

Suppose that $d_m^i = d_m|_{M_i}$, then $\{d_m^i\}$ is a 2-local higher derivation of M_i . By Theorem 2.5, $\{d_m^i\}$ is a higher derivation and hence it is inner. Let

$$d_m^i(A_i) = A_i S_m^i - S_m^i A_i - \sum_{k=1}^{m-1} S_{m-k}^i d_k^i(A_i) \quad A_i, S_1^i, \dots S_k^i \in M_i \quad (1 \le k \le m).$$

Let $A = (A_1, \dots, A_n)$ and $U_m^{A,B} = (U_1^m, \dots, U_n^m)$, Since

$$d_{m}(A_{1}, \dots, A_{n}) = (A_{1}, \dots, A_{n})(U_{1}^{m}, \dots, U_{n}^{m}) - (U_{1}^{m}, \dots, U_{n}^{m})(A_{1}, \dots, A_{n})$$

$$- \sum_{k=1}^{m-1} (U_{1}^{m-k}, \dots, U_{n}^{m-k})D_{k}^{A,B}(A_{1}, \dots, A_{n})$$

$$= d_{m}^{1}(A_{1}) \oplus \dots \oplus d_{m}^{n}(A_{n})$$

$$= \bigoplus_{i=1}^{n} (A_{i}S_{m}^{i} - S_{m}^{i}A_{i} - \sum_{k=1}^{m-1} S_{m-k}^{i}d_{k}^{i}(A_{i}))$$

$$= (A_{1}, \dots, A_{n})(S_{1}^{m}, \dots, S_{n}^{m}) - (S_{1}^{m}, \dots, S_{n}^{m})(A_{1}, \dots, A_{n})$$

$$- \sum_{k=1}^{m-1} (S_{1}^{m-k}, \dots, S_{n}^{m-k})D_{k}^{A,B}(A_{1}, \dots, A_{n}),$$

it follows that $\{d_m\}_{m=0}^k$ is a higher derivation. \square

References

[1] SH. Ayupov, K. Kudaybergenov, 2-local derivations and automorphisms on $\mathfrak{B}(\mathcal{H})$, J. Math. Anal. Appl. 395 (2012), 15–18. Zbl MR doi

- [2] E. Paul Bland, Higher derivations on rings and modules, Int. J. Math. Math. Sci. 2005 (2005), 2373–2387.

 Zbl MR doi
- [3] M. Ferrero, C. Haetinger, *Higher derivations and a theorem by Herstein*, Quaest. Math. **25** (2002), 249–257. **Zbl MR** doi
- [4] W. Cortes, C. Haetinger, On Jordan generalized higher derivations in rings, Turk. J. Math. 29 (2005), 1–10.

 Zbl MR Link
- [5] H. Hasse, F.K. Schmidt, Noch eine Begrüdung der Theorie der höheren Differentialquotienten in einem algebraischen Funtionenkörper einer Unbestimmeten, J. Reine Angew. Math. 177 (1937), 215–237.
 ZDI MR doi
- [6] S. Hejazian, T.L. Shateri, Automatic continuity of higher derivations on JB*-algebras, Bull. Iran. Math. Soc. 33 (2007), 11–23. zbl MR Link
- [7] S. Hejazian, M. Mirzavaziri, T.L. Shateri, *Higher derivations on Banach algebras*, J. Anal. Appl. **6** (2008), 1–15. **Zbl MR**
- [8] S. Hejazian, T.L. Shateri, A characterization of Higher derivations on Banach algebras, Ital. J. Pure Appl. Math. 32 (2014), 595–602. Zbl MR Link
- [9] P.N. Jewell, Continuity of module and higher derivations, Pacific J. Math. 68 (1977), 91–98. Zbl MR doi
- [10] S. Kim, J. Kim, Local automorphisms and derivations on \mathbb{M}_n , Proc. Amer. Math. Soc. **132** (2004), 1389–1392. Zbl MR doi
- [11] S. Kim, J. Kim, Local automorphisms and derivations on certain C*-algebras, Proc. Amer. Math. Soc. 133 (2005), 3303–3307. zbl MR doi
- [12] R.J. Loy, Continuity of higher derivations, Proc. Amer. Math. Soc. 37 (1973), 505–510. Zbl MR doi
- [13] A. Roy, R. Sridharan, Higher derivations and central simple algebras, Nagoya Math. J. 32 (1968), 21–30.
 Zbl MR doi
- [14] P. Šemrl, Local automorphisms and derivations on $\mathcal{B}(H)$, Proc. Amer. Math. Soc. 125 (1997), 2677–2680. Zbl MR doi
- [15] S. Satô, On rings with a higher derivation, Proc. Amer. Math. Soc. 30 (1971), 63–68. Zbl MR doi
- [16] T.L. Shateri, Local higher derivations, Thai. J. Math. 10 (2012), 453–462. Zbl MR Link
- [17] Y. Uchino, T. Satoh, Function field modular forms and higher derivations, J. Math. Ann. 311 (1998), 439–466.
 Zbl MR doi