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Abstract

In this article, we introduce (strongly) 2-absorbing ideals of monoids and generalize them to (strongly) 2-absorbing
subacts of an act over monoids. Among some useful lemmas, we show that the radical ideal of a strongly 2-absorbing
ideal is either a prime ideal or an intersection of two ideals which are only distinct prime ideals minimal over it. Also,
we prove that for each strongly 2-absorbing ideal I of a monoid, there exists a strongly 2-absorbing S-act A such that
Ann(A) = I and vice versa. Moreover, some of their basic properties are developed.
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1 Introduction and Preliminaries

Prime ideals are useful tools in semigroup theory [4]. Recall that, a proper ideal I of S is called prime if the
inclusion sSs′ ⊆ I for s, s′ ∈ S, implies that either s ∈ I or s′ ∈ I. A proper ideal I of S is called semiprime if the
inclusion sSs ⊆ I for s ∈ S implies that s ∈ I. In equivalent, a proper ideal I is semiprime if and only if the set
inclusion A2 ⊆ I for each ideal A of S implies A ⊆ I. A monoid S with zero 0, is said to be prime (resp. semiprime)
if {0} is a prime (resp. semiprime) ideal of S. For an ideal I of a monoid S,

√
I is defined as the intersection of all

prime ideals of S containing I. In a commutative monoid, we have
√
I = {t ∈ S : ∃n ∈ N, tn ∈ I}; see [7, Proposition

3.2].

Badawi in [2] generalized 2-absorbing ideals from prime ideals in commutative rings. He called a nonzero proper
ideal I of a ring R is 2-absorbing if whenever r, r′, r′′ ∈ R and rr′r′′ ∈ I, then rr′ ∈ I, rr′′ ∈ I, or r′r′′ ∈ I. He proved
that a nonzero proper ideal I of a ring R is 2-absorbing if and only if whenever I1I2I3 ⊆ I for some ideals I1, I2, I3
of R, then I1I2 ⊆ I, I1I3 ⊆ I, or I2I3 ⊆ I. In other words, he defined 2-absorbing ideals by elements and ideals of
rings. On the other hand, according to the additive structure of commutative rings, these concepts defined by elements
and ideals are equivalent for rings. Therefore in this research, we intend to define a 2-absorbing ideal of monoids in
term of elements, which is a generalization of a prime ideal. But the notion in term of ideals is not equivalent to
2-absorbing ideals. The structural differences of rings (R,+, .) and monoids (S, .) make possible to describe similarities
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and differences of ways to specify a radical ideal of a strongly 2-absorbing ideal of a monoid. Among some following
results, we intend to show that if I is a strongly 2-absorbing ideal of a commutative monoid without zero, then either√
I is a prime ideal of S or

√
I = P1 ∩ P2, where P1 and P2 are only distinct prime ideals of S, which are minimal

over I.

One of the very useful notion in mathematics as well as in computer science is the notion of S-act. Throughout of
this paper, S denotes a monoid and A is a right unitary S-act. Recall that a right S-act A is a set A with a function
A×S → A such that if as is the image of (a, s) for a ∈ A and s ∈ S, then (i) (as)t = a(st) for a ∈ A and s, t ∈ S; and
(ii) a1 = a for all a ∈ A. An S-subact B of an S-act A written as B ≤ A, is a subset B of A such that bs ∈ B for all
b ∈ B and s ∈ S. Thus subacts of the S-act S are ideals of S. A fixed element of A, is an element d in an S-act A with
ds = d for all s ∈ S. An S-act A is called centered if S is a monoid with a two-sided zero element 0 and |D| = 1, where
D denotes the set of all fixed elements of A. Thus A is a centered if and only if there is a fixed element (necessarily
unique) denoted by θ such that: (i) θs = θ for all s ∈ S; and (ii) a0 = θ for all a ∈ A; the zero of A; see [1]. In what
follows, all of the acts are centered unless mentioned otherwise. An equivalence relation ϑ on an S-act A is called a
congruence on A if a1ϑa2 implies (a1s)ϑ(a2s) for any a1, a2 ∈ A and s ∈ S. We denote the set of all congruence of A
by Con(A). Let B be a subact of an S-act A with a unique fixed element θ. The set (B : A) = {s ∈ S : As ⊆ B} is
an ideal of S, which is called associated ideal of B and the ideal Ann(A) = (Θ : A) is called annihilator of A, where
Θ = {θ} is a subact of A. A centered S-act A is called faithful if (Θ : A) = {0}. A subact B of an S-act A is called a
prime subact if the inclusion aSs ⊆ B for any a ∈ A and s ∈ S, implies either a ∈ B or s ∈ (B : A). In equivalent, a
subact B of A is a prime subact if and only if the inclusion CI ⊆ B for any subact C of A and any right ideal I of S,
implies that either C ⊆ B or I ⊆ (B : A). Furthermore, a subact B of an act A is called semiprime if the inclusion
asSs ⊆ B for any a ∈ A and s ∈ S, implies as ∈ B. An S-act A is called prime (resp. semiprime) if the subact
Θ = {θ} of A is prime (resp. semiprime) as a subact of A; see [1].

Prime ideals are extended to arbitrary S-acts, analogous to the notion of a prime module which was discussed by
Dauns in [6]. We generalize the notion of prime subact to a 2-absorbing subact and investigate some results between
a strongly 2-absorbing subact and an associated ideal of it. We will investigate relations between a prime, semiprime,
2-absorbing, and stronly 2-absorbing subact of an act. We show that a monoid S is strongly 2-absorbing if and only if
there exists a strongly 2-absorbing faithful S-act, and immediately we conclude Proposition 3.13. We also prove that
for an ideal I of a monoid S, I is a strongly 2-absorbing ideal of S if and only if there exists a strongly 2-absorbing
S-act A with (Θ : A) = I. It is interesting to find out some results on 2-absorbing subacts which are holding for
2-absorbing submodules introduced as a generalization of prime submodules in [5].

All the notions in this text are standard; we refer the reader to see [3, 4, 8] for more details.

2 Generalizations of prime ideals in monoids

In this section, we define 2-absorbing and strongly 2-absorbing ideals over monoids. We show that there exist at
most two prime ideals minimal over a strongly 2-absorbing ideal. We want to show what is the radical ideal of a
strongly 2-absorbing ideal.

Definition 2.1. A proper ideal I of a monoid S is called 2-absorbing whenever the inclusion sSs′Ss′′ ⊆ I for any
s, s′, s′′ ∈ S, implies that either sSs′ ⊆ I or s′Ss′′ ⊆ I or sSs′′ ⊆ I. A monoid S with zero is called 2-absorbing if
{0} is a 2-absorbing ideal of S.

Let S be a commutative monoid. Then the 2-absorbing ideal I is defined as follows: If ss′s′′ ∈ I for every s, s′, s′′ ∈ S,
then either ss′ ∈ I or s′s′′ ∈ I or ss′′ ∈ I.

Definition 2.2. An ideal I of a monoid S is called strongly 2-absorbing if the inclusion ABC ⊆ I for any ideals A,
B, and C of S implies that either AB ⊆ I or AC ⊆ I or BC ⊆ I.

Remark 2.3. Every strongly 2-absorbing ideal of a monoid is a 2-absorbing ideal of it, but the converse is not true
(see Example 3.6). Let I be a strongly 2-absorbing ideal of S and let sSs′Ss′′ ⊆ I for s, s′, s′′ ∈ S. Therefore
sSs′Ss′′S ⊆ IS ⊆ I. Since I is a strongly 2-absorbing ideal, we deduce either sSs′S ⊆ I or sSs′′S ⊆ I or s′Ss′′S ⊆ I.
As 1 ∈ S, then either sSs′ ⊆ I or sSs′′ ⊆ I or s′Ss′′ ⊆ I.

We know that an ideal I of S is prime if and only if the set inclusion AB ⊆ I for any ideals A and B of S, implies
A ⊆ I or B ⊆ I; see [4]. Prime ideals of monoids and 2-absorbing ideals of commutative rings can be defined in two
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equivalent ways, by elements and by ideals. But these definitions in term of ideals and in term of elements are not
equivalent for 2-absorbing ideals of monoids Thus, this fact is a key for us to define the notion of strongly 2-absorbing
ideal. Since every 2-absorbing ideal is not strongly 2-absorbing, we have chosen, strongly 2-absorbing to nominate this
new notion.
Example 3.6 shows relationships between prime, semiprime, 2-absorbing, and strongly 2-absorbing ideals of the monoid
(N ∪ {0}, .). Notice that every ideal of a monoid S is a subact of SS and vice versa. Therefore this example applies
here, too.

Theorem 2.4. If I1 (resp. I2) is a 2-absorbing ideal of a monoid S1 (resp. S2), then I1 × S2 (resp. S1 × I2) is a
2-absorbing ideal of S1 × S2.

Furthermore, if P and Q are prime ideals of S1 and S2, respectively, then I = P × Q is a 2-absorbing ideal of
S1 × S2.

Proof . Let (s, t)(S1×S2)(s′, t′)(S1×S2)(s′′, t′′) ⊆ I1×S2, for (s, t), (s′, t′), (s′′, t′′) ∈ S1×S2. It implies sS1s
′S1s

′′ ⊆ I1.
Thus either sS1s

′ ⊆ I1 or sS1s
′′ ⊆ I1 or s′S1s

′′ ⊆ I1, and consequently, either (s, t)(S1 × S2)(s′, t′) ⊆ I1 × S2 or
(s, t)(S1 × S2)(s′′, t′′) ⊆ I1 × S2 or (s′, t′)(S1 × S2)(s′′, t′′) ⊆ I1 × S2.
For the second part, if we have the inclusion (s1, t1)(S1 × S2)(s2, t2)(S1 × S2)(s3, t3) ⊆ P ×Q for s1, s2, s3 ∈ S1 and
t1, t2, t3 ∈ S2, then s1S1s2S1s3 ⊆ P and t1S2t2S2t3 ⊆ Q. It is obvious that s1S1s2S1s3S1 ⊆ P and t1S2t2S2t3S2 ⊆ Q.
Since P and Q are prime ideals, then at least one of siS1 and tiS2 (for i = 1, 2, 3) is a subset of P and Q, respectively.
Say s1S1 ⊆ P and t3S2 ⊆ Q. Hence (s1, t1)(S1 × S2)(s3, t3)(S1 × S2) ⊆ P ×Q. Since S1 and S2 are monoids, we have
(s1, t1)(S1 × S2)(s3, t3) ⊆ P ×Q. �

The next theorem shows that every 1-absorbing ideal is 2-absorbing.

Theorem 2.5. Every prime ideal of a monoid S is a 2-absorbing ideal.

Proof . Let P be a prime ideal of S and let sSs′Ss′′ ⊆ P , for s, s′, s′′ ∈ S. Then we have sSs′Ss′′S ⊆ P . Since P is
a prime ideal, then either sSs′S ⊆ P or s′′S ⊆ P . Therefore we have sSs′ ⊆ P or s′′ ∈ P , since 1 ∈ S. Thus either
sSs′ ⊆ P or sSs′′ ⊆ P or s′Ss′′ ⊆ P . �

We note that Example 3.6 implies that the converse of above theorem is not true.

Prime and 2-absorbing ideals of a monoid can be generalized to n-absorbing ideal for any positive integer n ∈ N.
An ideal I of S is called n-absorbing whenever for the inclusion s1Ss2S · · ·Ssn+1 ⊆ I, for any s1, s2, . . . , sn+1 ∈ S,
there are n of the si ’s whose product s1S · · ·Ssi belongs to I. Theorem 2.5 can be achieved for n-absorbing ideals
(n ≥ 2), by induction on n. It means that every n-absorbing ideal of a monoid is an m-absorbing ideal for any n ≤ m.
The following two lemmas are essential for proving our main results.

Lemma 2.6. Let S′ be a proper submonoid of a commutative monoid without zero S, and let P be an ideal of S
which is maximal with respect to exclusion of S′. Then P is a prime ideal of S.

Proof . On the contrary, suppose that P is not a prime ideal, then there exist a, b ∈ S \ P such that ab ∈ P . Clearly

ideals 〈P, a〉 =
⋃

i,j∈N
{P i, aj , P iaj} and 〈P, b〉 contain P strictly and they are generated by P and a and b, respectively.

Since P is an ideal of S and is maximal with respect to exclusion of S′, then they are not disjoint from S′. Therefore
there exist s, s′ ∈ S′ such that s ∈ 〈P, a〉 and s′ ∈ 〈P, b〉. If we ponder on forms of their members, then we conclude
that there exist i, j ∈ N such that s = ai and s′ = bj . Thus ss′ = aibj ∈ P , since S is a commutative monoid. Then
ss′ ∈ P ∩ S′, which is a contradiction to maximality of P with respect to exclusion of S′. Hence the assertion follows.
�

Lemma 2.7. Let I and P be two ideals of a commutative monoid without zero S and let P be prime. The following
statements are equivalent:

(1) P is a minimal prime ideal over I, that is, there exists no prime ideal between I and P ;

(2) S \ P is a submonoid of S and is maximal with respect to missing I;

(3) For every x ∈ P , there exist y ∈ S \ P and a nonnegative integer n such that yxn ∈ I.
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Proof . (1)⇒ (2). It is clear that S \ P is a submonoid of S which is not contained in I. Consider

Σ = {M |M is a submonoid of S, S \ P ⊆M, M ∩ I = ∅}.

It is a nonempty set, since S \ P ∈ Σ. For any chain

· · · ⊆Mi ⊆Mi+1 ⊆ · · ·

in Σ, the set
⋃
i∈I

Mi is an upper bound. By Zorn’s lemma, Σ has a maximal element such as L. Therefore L is a

submonoid and maximal respect to missing I and S \P ⊆ L. If Q is an ideal containing I that is maximal with respect
to being disjoint from L, then by Lemma 2.6, Q is prime. Since Q is disjoint from L, then L ⊆ S \Q. As S \ P ⊆ L,
clearly S \ P ⊆ S \ Q which implies I ⊂ Q ⊆ P , but P is a prime ideal minimal over I which implies that Q = P .
Since S \ P ⊆ L ⊆ S \Q, we have S \ P = S \Q = L.
(2)⇒ (3). Let x ∈ P , and set

T = {yxi| y ∈ S \ P ; i = 0, 1, 2, . . . }.

We show that T is a submonoid of S and properly contains S \ P . Let yxi, yxj ∈ T for some nonnegative integers i
and j and y ∈ S \ P . As y2 ∈ S \ P , then y2xi+j ∈ T and T is a submonoid of S. Since S \ P is maximal respect to
missing I and S \ P ⊂ T , then T ∩ I 6= ∅. Hence there exist an element y ∈ S \ P and a nonnegative integer i such
that yxi ∈ I.
(3)⇒ (1). Assume that I ⊂ Q ⊆ P , where Q is a prime ideal. If there exists an element x ∈ P \Q, then there exist
y ∈ S \P ⊆ S \Q and a nonnegative integer i such that yxi ∈ I ⊂ Q. Now since x /∈ Q, then xi /∈ Q and also we have
y /∈ Q ⊆ P , which is a contradiction. Therefore P = Q and P is a minimal prime ideal over I. �

In this situation, it seems desirable to have the following theorem.

Theorem 2.8. Let I and P be two ideals of a commutative monoid without zero S. The following statements are
equivalent:

(1) P is a minimal prime ideal over I;

(2) For every finitely generated ideal X ⊆ P , there exist an ideal Y ⊆ S \ P and a nonnegative number n such that
Y Xn ⊆ I.

Proof . (1) ⇒ (2). Let P be a minimal prime ideal over I and let X be a finitely generated ideal of S such that
X = < x1, x2, . . . , xr >⊆ P . Then by Lemma 2.7, there exist y1, y2, . . . , yr ∈ S \ P and nonnegative integers

n1, n2, . . . , nr such that y1x
n1
1 ∈ I, y2x

n2
2 ∈ I, . . . , yrx

nr
r ∈ I. If n =

r∑
i=1

ni and Y = y1y2 · · · yrS, then we can

conclude Y Xn ⊆ I.
(2)⇒ (1). It follows from Lemma 2.7. �

Now we are going to discuss about the number of prime ideals minimal over a 2-absorbing ideal.

Theorem 2.9. If I is a strongly 2-absorbing ideal of a commutative monoid without zero S, then there exist at most
two prime ideals minimal over I.

Proof . On the contrary, suppose that P1, P2, and P3 are three prime ideals of S being minimal over I. Then by
Theorem 2.8, there exist finitely generated ideals X1 and X2 of S, such that X1 ⊆ P1, X2 ⊆ P2, X1 * P2, X1 * P3,
X2 * P1 and X2 * P3. By Theorem 2.8, there exist ideals Y2 * P1 and Y1 * P2 such that Y2X

n
1 ⊆ I and Y1X

m
2 ⊆ I,

for some n, m ≥ 1 where n and m are the least integers with this property. Since X1 * P2, X2 * P1, and I is
a strongly 2-absorbing ideal of S and m and n are the least integers, we conclude Y2X1 ⊆ I and Y1X2 ⊆ I. Thus
(Y1 ∪ Y2)X1X2 ⊆ I. Facts Y1 ∪ Y2 * P1 and Y1 ∪ Y2 * P2, imply (Y1 ∪ Y2)X1 * I and (Y1 ∪ Y2)X2 * I. Therefore,
X1X2 ⊆ I ⊆ P3, which is a contradiction to choosing X1 and X2 which are not contained in the prime ideal P3. Hence
there exist at most two minimal prime ideals over I.�

Now by foregone following conclusions, we can determine the radical ideal of a strongly 2-absorbing ideal I in a
commutative monoid S as the intersection of all prime ideals of S containing I.
We recall the following lemma for commutative monoids, which can be proved analogously with the same proof of
Theorem 2.1 in [2].
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Lemma 2.10. Let S be a commutative monoid and let I be a 2-absorbing ideal of S. Then
√
I is a 2-absorbing ideal

and x2 ∈ I for every x ∈
√
I.

Theorem 2.11. If I is a strongly 2-absorbing ideal of a commutative monoid S without any zero, then one of the
following statements holds:

(1)
√
I = P is a prime ideal of S such that P 2 ⊆ I.

(2)
√
I = P1 ∩ P2, P1P2 ⊆ I and

√
I
2 ⊆ I where P1 and P2 are only distinct prime ideals of S, which are minimal

over I.

Proof . By Theorem 2.9, we conclude that either
√
I = P is a prime ideal of S or

√
I = P1∩P2, where P1, and P2 are

only distinct prime ideals of S which are minimal over I. Suppose that
√
I = P is a prime ideal of S. We are going

to show that in both cases
√
I
2 ⊆ I. Let z ∈

√
I
2
. Then there exist x, y ∈

√
I such that z = xy. By Lemma 2.10,

x2, y2 ∈ I. Therefore x2S ⊆ I and y2S ⊆ I. We have xS(xS ∪ yS)yS ⊆ I, and consequently either xS(xS ∪ yS) ⊆ I

or (xS∪yS)yS ⊆ I or xSyS ⊆ I, since I is a strongly 2-absorbing ideal of S. We conclude z = xy ∈ I. Thus
√
I
2 ⊆ I.

Now, suppose that
√
I = P1 ∩ P2, where P1, P2 are only distinct prime ideals of S which are minimal over I. Let

z ∈
√
I
2
. Then there exist x, y ∈

√
I such that z = xy. By the same argument which is given above, x, y ∈ I which

implies that
√
I
2 ⊆ I. Now we show that P1P2 ⊆ I. We have four cases.

Case (1) Let z = xy ∈ P1P2 for some x ∈ P1 \ P2 and y ∈ P2 \ P1. Therefore xS ⊆ P1, xS * P2, yS ⊆ P2, and
yS * P1. With the same argument of Theorem 2.9, we have xSyS ⊆ I and z = xy ∈ I.

Case (2) Let z = xy ∈ P1P2 for some x, y ∈ P1 ∩ P2 =
√
I. Since

√
I
2 ⊆ I, then z = xy ∈ I.

Case (3) Let z = xy ∈ P1P2 for some x ∈ P1∩P2 and y ∈ P2\P1, and t ∈ P1\P2. Then (xS∪tS) ⊆ P1, (xS∪tS) * P2,
yS ⊆ P2 and yS * P1. By the same argument as in the proof of Theorem 2.9, we have (xS ∪ tS)(yS) ⊆ I. This
implies that (xS)(yS) ⊆ I, and so we have z = xy ∈ I.
Case (4) A similar argument of case (3) shows that if y ∈

√
I = P1 ∩ P2 and x ∈ P1 \ P2, then z = xy ∈ I, and so

P1P2 ⊆ I. �

3 Basic properties of 2-absorbing subacts

In this section, we define and study 2-absorbing and strongly 2-absorbing acts and subacts over monoids with
unique zero.

Definition 3.1. A proper subact B of an S-act A is called 2-absorbing whenever aSsSs′ ⊆ B for s, s′ ∈ S and
a ∈ A, then either aSs ⊆ B or aSs′ ⊆ B or sSs′ ⊆ (B : A).
A centered S-act A is called a 2-absorbing act, whenever Θ = {θ}is a 2-absorbing subact of A.

Definition 3.2. A proper subact B of A is called strongly 2-absorbing whenever the inclusion CIJ ⊆ B for any
right ideals I, J ⊆ S and any subact C of A, implies that either I ⊆ (B : C) or J ⊆ (B : C) or IJ ⊆ (B : A).

Example 3.3. (1) Consider BZ = {(z, z)|z ∈ Z} as a subact of (Z × Z)Z. If (m,n)Zz1Zz2 ⊆ B, for every z1, z2 ∈ Z
and (m,n) ∈ Z× Z, then m = n or z1z2 = 0. Since m = n, then (m,n)Zz1 ⊆ B and (m,n)Zz2 ⊆ B. If z1z2 = 0, then
z1Zz2 ⊆ (BZ : (Z× Z)Z) since (BZ : (Z× Z)Z) = 0. Therefore BZ is a 2-absorbing subact of (Z× Z)Z.
(2) Let S be a left zero semigroup and let S1 = S ∪ {1}. Any subset I of the monoid S1 is a 2-absorbing and strongly
2-absorbing ideal. Since {s} = sS1s′S1s′′ ⊆ I for s, s′, s′′ ∈ S, then {s} = sS1s′ ⊆ I. Any subact B of an act A over
S1 is a (strongly) 2-absorbing subact, since aS1 = aS1s = aS1sS1s′ ⊆ B for every s, s′ ∈ S1 and a ∈ A.

It is clear that an ideal I of a monoid S is a (strongly) 2-absorbing ideal of S if and only if IS is a (strongly)
2-absorbing as an S-subact of SS . Since subacts of SS are ideals of S and (J : S) = J , for each ideal J of S, the
assertion follows.

Proposition 3.4. Every nonzero subact B of a 2-absorbing act A is a 2-absorbing act.
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Proof . Suppose bSsSs′ = Θ for s, s′ ∈ S and b ∈ B. If bSs = Θ or bSs′ = Θ, then there is nothing to prove.
Let bSs 6= Θ and bSs′ 6= Θ. Since A is a 2-absorbing act, then Θ is a 2-absorbing subact of A. It follows that
sSs′ ⊆ (Θ : A) ⊆ (Θ : B). Hence B is a 2-absorbing act. �

Now we investigate relations between prime, 2-absorbing, and strongly 2-absorbing subacts of acts.

Proposition 3.5. Every prime subact of an act is a strongly 2-absorbing subact, and every strongly 2-absorbing
subact of an act is a 2-absorbing subact.

Proof . Let B be a prime subact of an S-act A and let CIJ ⊆ B for any ideals I, J of S and any subact C of A. Since
B is a prime subact of A, we have C ⊆ B or IJ ⊆ (B : A). Then CI ⊆ C ⊆ B and CJ ⊆ C ⊆ B or IJ ⊆ (B : A).
Hence B is a strongly 2-absorbing subact of A.
Let B be a strongly 2-absorbing subact of A and let aSsSs′ ⊆ B for s, s′ ∈ S and a ∈ A. Therefore aSsSs′S ⊆ BS ⊆ B.
It is clear that sS and s′S are ideals of S and that aS is a subact of A. Also since B is a strongly 2-absorbing subact
of A, then either aSsS ⊆ B or aSs′S ⊆ B or sSs′S ⊆ (B : A). As 1 ∈ S, we can conclude that either aSs ⊆ B or
aSs′ ⊆ B or sSs′ ⊆ (B : A). �

The following example shows that the converse of Proposition 3.5, is not necessarily true.

Example 3.6. Let (N = N ∪ {0}, .) be the monoid of nonnegative integer numbers with respect to multiplication.
For any prime integers p, q, r ∈ N ,
(1) pN = {pm : m ∈ N} is a prime subact of N .
(2) p2N is a 2-absorbing subact of N , but it is not a semiprime subact of N and then it is not a prime subact. Since
p2 ∈ p2N , but p /∈ p2N .
(3) pqN is a semiprime subact of N but is not a prime subact. Since we have pq ∈ pqN , but p /∈ pqN and q /∈ pqN .
(4) p2N ∪ q2N is a 2-absorbing subact of N . Although it is not a strongly 2-absorbing subact. Since

(pN ∪ qN)(pN ∪ qN)(pN ∪ qN) = p3N ∪ q3N ∪ p2qN ∪ pq2N ⊆ p2N ∪ q2N,

but (pN ∪ qN)(pN ∪ qN) = p2N ∪ q2N ∪ pqN * p2N ∪ q2N .
(5) pqrN is a semiprime subact of N , but it is not a 2-absorbing subact and then it is not a strongly 2-absorbing
subact too. Note that pqr ∈ pqrN , but pq /∈ pqrN and pr /∈ pqrN and qr /∈ pqrN .

Therefore we get the following relations strictly:

Prime

Semiprime

Strongly 2-absorbing 2-absorbing

�
��3

Z
ZZ~

-

Now, we are going to prove some algebraic structures of (strongly) 2-absorbing acts and subacts.

Proposition 3.7. The intersection of every two prime subacts of an S-act is a strongly 2-absorbing subact.

Proof . Let P1 and P2 be two prime subacts of an S-act A and let BIJ ⊆ P1 ∩ P2 for a subact B of A and ideals
I and J of S. Then BIJ ⊆ P1 and BIJ ⊆ P2. Since P1 and P2 are prime subacts of A and by Proposition 3 of [1],
(P1 : A) and (P2 : A) are prime ideals of S, then either B ⊆ P1 or I ⊆ (P1 : A) or J ⊆ (P1 : A) and either B ⊆ P2

or I ⊆ (P2 : A) or J ⊆ (P2 : A). In any case, it can be concluded that either BI ⊆ P1 ∩ P2 or BJ ⊆ P1 ∩ P2 or
IJ ⊆ (P1 ∩ P2 : A). Hence P1 ∩ P2 is a strongly 2-absorbing subact of A. �

Proposition 3.8. Let B be a 2-absorbing subact of an S-act A and let ϑ ∈ Con(A). Then B/ϑ�B is a 2-absorbing
subact of A/ϑ.

Proof . For s1, s2 ∈ S and [a]ϑ ∈ A/ϑ, let [a]ϑSs1Ss2 ⊆ B/ϑ�B . We are going to show that either [a]ϑSs1 ⊆ B/ϑ�B
or [a]ϑSs2 ⊆ B/ϑ�B or s1Ss2 ⊆ (B/ϑ�B : A/ϑ). From [a]ϑSs1Ss2 ⊆ B/ϑ�B , we conclude aSs1Ss2 ⊆ B for a ∈ A.
Then either aSs1 ⊆ B or aSs2 ⊆ B or s1Ss2 ⊆ (B : A), since B is a 2-absorbing subact of A. Therefore either
[a]ϑSs1 ⊆ B/ϑ�B or [a]ϑSs2 ⊆ B/ϑ�B or s1Ss2 ⊆ (B/ϑ�B : A/ϑ). �
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Corollary 3.9. Let B be a 2-absorbing subact of an S-act A, let ϑ ∈ Con(A), and let Bϑ = {a ∈ A | B ∩ [a]ϑ 6= ∅ }.
Then Bϑ/ϑ�

Bϑ
is a 2-absorbing subact of A/ϑ.

Proof . By Proposition 3.8, B/ϑ�B is a 2-absorbing subact of A/ϑ, and by the third isomorphism theorem of algebra
(see [3, Theorem 6.18]), we have B/ϑ�B

∼= Bϑ/ϑ�
Bϑ

. Hence Bϑ/ϑ�
Bϑ

is a 2-absorbing subact of A/ϑ. �

The concepts of congruence and quotient acts closely related, then we can have the following result.

Corollary 3.10. If C is a subact of B and B is a 2-absorbing subact of A, then the Rees factor B/C is a 2-absorbing
subact of A/C.

Proof . We know for the Rees congruence ρC ∈ Con(A), that is, for a, a′ ∈ A, aρCa
′ if and only if a = a′ or a, a′ ∈ C,

we have A/ρC equals the Rees factor A/C. By Proposition 3.8, the Rees factor B/C is a 2-absorbing subact of A/C.
�

Theorem 3.11. (1) If B is a strongly 2-absorbing subact of an act A over monoid S, then (B : A) is a strongly
2-absorbing ideal of the monoid S.

(2) Let B be a proper subact of a cyclic act A over a commutative monoid S. If (B : A) is a strongly 2-absorbing
ideal of S, then B is a strongly 2-absorbing subact of A.

Proof . (1) Let I, J,K be three ideals of S such that IJK ⊆ (B : A); then AIJK = (AI)JK ⊆ B. Since B is a
strongly 2-absorbing subact of A, we have either AIJ ⊆ B or AJK ⊆ B or JK ⊆ (A : B). Hence IJ ⊆ (A : B) or
JK ⊆ (A : B) or JK ⊆ (A : B). Therefore (A : B) is a strongly 2-absorbing ideal of S.

(2) Let A = aS be a cyclic act and let (B : A) be a strongly 2-absorbing ideal of S. Consider CIJ ⊆ B, for the
subact C of A and ideals I and J of S. If CI * B and CJ * B, then there exist as ∈ C ≤ aS and at ∈ C ≤ aS for
some s, t ∈ S such that (as)I * B and (at)J * B. But we have (as)IJ ⊆ B and (at)IJ ⊆ B, since CIJ ⊆ B. We
have a(sS ∪ tS)IJ ⊆ B. Therefore aS(sS ∪ tS)IJ ⊆ BS ⊆ B and (sS ∪ tS)IJ ⊆ (B : A), because S is a commutative
monoid. Since (B : A) is a strongly 2-absorbing ideal, either (sS ∪ tS)I ⊆ (B : A) or (sS ∪ tS)J ⊆ (B : A) or
IJ ⊆ (B : A). Thus we just have IJ ⊆ (B : A), since (as)I * B and (at)J * B, then (sS ∪ tS)I * (B : A) or
(sS ∪ tS)J * (B : A). Hence B is a strongly 2-absorbing subact of A. �

In Theorem 3.11, we showed that the converse of first statement is true for cyclic acts over commutative monoids.
In the next proposition, we are going to characterize strongly 2-absorbing acts and monoids.

Proposition 3.12. A monoid S is strongly 2-absorbing if and only if there exists a strongly 2-absorbing faithful
S-act.

Proof . If S is a strongly 2-absorbing monoid. Then SS is a faithful strongly 2-absorbing S-act.
Conversely, suppose that there exists a faithful strongly 2-absorbing S-act A. We show that S is a strongly 2-
absorbing monoid or equivalently, 0 is a strongly 2-absorbing ideal of S. Suppose IJK = 0 for ideals I, J, and K of
S. If IJ 6= 0 = (Θ : A) and IK 6= 0 = (Θ : A), then AIJ 6= Θ and AIK 6= Θ. Therefore there exist a, b ∈ A such
that aIJ 6= Θ and bIK 6= Θ, and then {a, b}IJ 6= Θ and {a, b}IK 6= Θ. Since AIJK = Θ, we have ({a, b}I)JK = Θ.
Hence A is strongly 2-absorbing, JK = (Θ : A) = 0, that is, S is a strongly 2-absorbing monoid. �

We close this paper by showing the relation between strongly 2-absorbing ideals and acts.

Proposition 3.13. Let I be an ideal of a monoid S. Then I is a strongly 2-absorbing ideal of S if and only if there
exists a strongly 2-absorbing S-act A with (Θ : A) = I.

Proof . (1)⇒ (2). If I is a strongly 2-absorbing ideal of S, then the Rees factor S/I is a strongly 2-absorbing monoid.
By Proposition 3.12, there exists a strongly 2-absorbing faithful S/I-act AS/I such that

(Θ : A) = {[s] ∈ S/I | A[s] = Θ} = I.

(2)⇒ (1). If A is a strongly 2-absorbing S-act and I = (Θ : A), then AS/I is a strongly 2-absorbing S-act such that
[0] = I = (Θ : AS/I). By Proposition 3.12, S/I is a strongly 2-absorbing monoid which is means that I is a strongly
2-absorbing ideal of S, as desired. �
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